Forgot password?
 Register account
View 3934|Reply 14

[几何] 面积 三角形内切圆锥曲线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-4-21 05:37 |Read mode
圆锥曲线分别与直线 $A_2 A_3,A_3 A_1,A_1​​ A_2$ 切于点 $B_1,B_2,B_3$,则$$\S{B_1​​ B_2 B_3}=2 \sqrt{\frac{\S{B_2 B_3 A_1} \S{B_3 B_1 A_2} \S{B_1 B_2 A_3}}{\S{A_1 A_2 A_3}}}$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-4-21 05:39

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-4-25 14:43
这个结论真好看,如何证明呢?

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-5-28 19:48 From mobile phone
双曲线也满足

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-5-28 20:08
有没有证明?不用仿射变换的

Comment

用保持无穷远直线不变的复射影变换到所有锥线即可  Posted 2025-5-28 20:49
kuing的公式连用三次也可以  Posted 2025-5-28 20:50
能写下证明过程不?
双曲线也有?  Posted 2025-5-28 21:08

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2025-5-28 21:31
其实很简单的,甚至说跟圆锥曲线无关。若圆锥曲线分别与 $\triangle A_1B_1C_1$ 的三边 $A_2A_3$、$A_3A_1$、$A_1A_2$ 所在直线分别相切于点 $B_1$、$B_2$、$B_3$,则直线 $A_1B_1$、$A_2B_2$、$A_3B_3$ 共点。对于第一个图设 $A_2B_1/A_2A_3=t$,$A_3B_2/A_3A_1=u$,$A_1B_3/A_1A_2=v$,则
\[
tuv=(1-t)(1-u)(1-v)
\]
右边减去左边得
\[
1-t-u-v+tu+tv+uv-2tuv=0
\]

\begin{align*}
S_{\triangle B_2B_3A_1}&=v(1-u)S_{\triangle A_1A_2A_3}\\
S_{\triangle B_3B_1A_2}&=t(1-v)S_{\triangle A_1A_2A_3}\\
S_{\triangle B_1B_2A_3}&=u(1-t)S_{\triangle A_1A_2A_3}
\end{align*}

\begin{align*}
S_{\triangle B_1B_2B_3}&=S_{\triangle A_1A_2A_3}-S_{\triangle B_2B_3A_1}-S_{\triangle B_3B_1A_2}-S_{\triangle B_1B_2A_3}\\
&=(1-v(1-u)-t(1-v)-u(1-t))S_{\triangle A_1A_2A_3}\\
&=(1-t-u-v+tu+tv+uv)S_{\triangle A_1A_2A_3}\\
&=2tuvS_{\triangle A_1A_2A_3}\\
&=2\sqrt{tuv(1-t)(1-u)(1-v)}S_{\triangle A_1A_2A_3}\\
&=2\sqrt{\frac{v(1-u)S_{\triangle A_1A_2A_3}\cdot t(1-v)S_{\triangle A_1A_2A_3}\cdot u(1-t)S_{\triangle A_1A_2A_3}}{S_{\triangle A_1A_2A_3}}}\\
&=2\sqrt{\frac{S_{\triangle B_2B_3A_1}S_{\triangle B_3B_1A_2}S_{\triangle B_1B_2A_3}}{S_{\triangle A_1A_2A_3}}}
\end{align*}
下面的类似可以证明

Comment

$t,u,v$那个等式是怎来的呢?  Posted 2025-5-28 23:59

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-5-29 00:23 From mobile phone
注意到AₙBₙ(n=1,2,3)三线交点必共线,在三角形A₁₂₃中用赛瓦定理,即有tuv=∏(1-n){n=t,u,v}

Comment

由Brianchon定理,$A_1B_1$、$A_2B_2$、$A_3B_3$共点。  Posted 2025-5-29 03:21
明白,谢谢!  Posted 2025-5-29 10:27

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-5-29 10:26
hejoseph 发表于 2025-5-28 21:31
其实很简单的,甚至说跟圆锥曲线无关。若圆锥曲线分别与 $\triangle A_1B_1C_1$ 的三边 $A_2A_3$、$A_3A_1$ ...
如果是第2个图的情形,那$t,u,v$的等式是一样的吗?还是有其它形式?

Comment

你自己计算下不就知道了。另外,如果式子换为有向面积,此时字母的顺序需要作一些调整,使旋转方向都是右旋的,比变为有向线段的比,证明就完全不用修改了。   Posted 2025-5-29 14:13

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit