Forgot password?
 Register account
View 139|Reply 1

[概率/统计] 一道概率论的问题

[Copy link]

1

Threads

0

Posts

6

Credits

Credits
6

Show all posts

woder Posted 2025-4-22 22:56 From mobile phone |Read mode
海岸炮兵发现敌人的巡洋舰在离海岸1公里处,并立即以每分钟一发炮弹的速度炮击敌舰。在第一发炮弹射出之后,敌舰随即以每小时六十公里的速度逃跑。设当敌舰离海岸为x公里时,炮弹击中它的概率为$0.75x^{-2}$。又假设敌舰在被击中n次后,不沉没的概率为$(1/4)^n$。忽略炮弹飞行时间,求敌舰能逃跑的概率。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-4-23 01:56
对于第 \( k \) 发炮弹(在 \( t = k \) 分钟时发射),距离 \( x(k) = 1 + k \),命中概率为:\[p_k = 0.75 \cdot (1 + k)^{-2}\]
每发炮弹的命中事件是独立的。
\[
P(\text{逃跑}) = \prod_{k=0}^\infty \left[ (1 - p_k) \cdot 1 + p_k \cdot\frac{1}{4} \right] = \prod_{k=0}^\infty \left[ 1 - \frac{9}{16} \cdot (1 + k)^{-2} \right] = \prod_{n=1}^\infty \left[ 1 - \frac{9}{16} \cdot \frac{1}{n^2} \right] = \prod_{n=1}^\infty \left[ 1 - \left(\frac{3}{4n}\right)^2 \right]
\]
利用正弦函数的无限乘积形式:
\[
\prod_{n=1}^\infty \left( 1 - \frac{z^2}{n^2} \right) = \frac{\sin(\pi z)}{\pi z}
\]
令 \( z = \frac{3}{4} \):
\[
P(\text{逃跑}) = \frac{\sin\left(\pi \cdot \frac{3}{4}\right)}{\pi \cdot \frac{3}{4}}= \frac{2\sqrt{2}}{3\pi}
\]

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit