|
对于第 \( k \) 发炮弹(在 \( t = k \) 分钟时发射),距离 \( x(k) = 1 + k \),命中概率为:\[p_k = 0.75 \cdot (1 + k)^{-2}\]
每发炮弹的命中事件是独立的。
\[
P(\text{逃跑}) = \prod_{k=0}^\infty \left[ (1 - p_k) \cdot 1 + p_k \cdot\frac{1}{4} \right] = \prod_{k=0}^\infty \left[ 1 - \frac{9}{16} \cdot (1 + k)^{-2} \right] = \prod_{n=1}^\infty \left[ 1 - \frac{9}{16} \cdot \frac{1}{n^2} \right] = \prod_{n=1}^\infty \left[ 1 - \left(\frac{3}{4n}\right)^2 \right]
\]
利用正弦函数的无限乘积形式:
\[
\prod_{n=1}^\infty \left( 1 - \frac{z^2}{n^2} \right) = \frac{\sin(\pi z)}{\pi z}
\]
令 \( z = \frac{3}{4} \):
\[
P(\text{逃跑}) = \frac{\sin\left(\pi \cdot \frac{3}{4}\right)}{\pi \cdot \frac{3}{4}}= \frac{2\sqrt{2}}{3\pi}
\] |
|