Forgot password?
 Register account
View 148|Reply 2

[几何] 任意一条直线截共轴圆组会生成对合,中心为直线与根轴的交点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-4-24 08:16 |Read mode
$\vv{OA}\cdot\vv{Of(A)}=\vv{OB}\cdot\vv{Of(B)}=\vv{OC}\cdot\vv{Of(C)}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-24 09:34
截线换成圆心在根轴上的圆,仍生成对合,对合中心$O$是截圆与共轴圆的根心。
$O,A,f(A);O,B,f(B);O,C,f(C)$共线

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-24 10:29
$P$为截圆$c$与根轴的一个交点,则$PA,Pf(A)$与蓝圆的第二交点为$A',f(A)'$,$PB,Pf(B)$与红圆的第二交点为$B',f(B)'$,$PC,Pf(C)$与绿圆的第二交点为$C',f(C)'$,则$A',f(A)',B',f(B)',C',f(A)',f(C)'$共线$c'$

$d$是以$P$为中心、正交于共轴圆组的圆,则$c'$为截圆$c$关于$d$的反演
$c$截共轴圆构成对合$A,f(A);B,f(B);C,f(C)$
$c'$截共轴圆构成对合$A',f(A)';B',f(B)';C',f(C)'$
这两组对合关于$P$透视对应

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit