Forgot password?
 Register account
View 404|Reply 1

[几何] $T^2$上的曲线$\frac{p}{q}$和$\frac{r}{s}$相交$|p s-q r|$次

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-4-29 19:20 |Read mode
第1697页:正整数$p,q,r,s$,
\begin{cases}pt_1\equiv rt_2\mod1\\qt_1\equiv st_2\mod 1\end{cases}有$|p s-q r|$个解$(t_1,t_2),0\le t_1,t_2<1$,为什么?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-29 19:42
四条直线$pt_1-rt_2=0$、$pt_1-rt_2=1$、$qt_1-st_2=0$、$qt_1-st_2=1$围成了平行四边形$P$
对于每组解$(t_1,t_2)$,将$P$作平移$(t_1,t_2)$,$P$的平移覆盖了整个平面
正方形$[0,1)^2$的面积为$1$,$P$的面积为$\frac1{|ps-qr|}$,所以$[0,1)^2$内有$|ps-qr|$组解$(t_1,t_2)$

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit