|
matematickitalent.mk/uploads/books/CxAZX0sIEEmAQvSdSVI3nQ.pdf
设 $N \geq 2$ 是一个整数,令 $\mathbf{a}=(a_1, \ldots, a_N),\mathbf{b}=(b_1, \ldots b_N)$ 是两个分量为非负整数的向量。脚标按 modn理解。若对一切 $i$ 都有
\[
a_i=\frac{1}{2 b_i+1} \sum_{s=-b_i}^{b_i} a_{i+s}
\]
则称 $\mathbf{a}$ 为 $\mathbf{b}$ 好的,若 $\mathbf{a}, \mathbf{b}$ 互为好的,证明:两列数中至少 $N+1$ 个数为 0. |
|