Forgot password?
 Register account
View 101|Reply 0

[数列] 典型数表

[Copy link]

198

Threads

250

Posts

1

Reputation

Show all posts

hjfmhh posted 2025-5-22 19:08 |Read mode
Last edited by hbghlyj 2025-5-23 00:36已知 $n$ 行 $n$ 列 $(n \geq 2)$ 的数表 $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right)$ 中,对任意的 $i \in\{1,2, \cdots, n\}, j \in\{1,2, \cdots, n\}$,都有 $a_{i j} \in\{0,1\}$.若当 $a_{s t}=0$ 时,总有 $\sum_{i=1}^n a_{i t}+\sum_{j=1}^n a_{s j} \geq n$,则称数表 $A$ 为典型表,此时记 $S_n=\sum_{i=1}^n \sum_{j=1}^n a_{i j}$. (1)若数表 $B=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right), C=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$ ,请判断 $B, C$ 是否为典型表,并说明理由; (2)当 $n \geq 6$ 时,是否存在典型表 $A$ 使得 $S_6=17$,若存在,请写出一个 $A$ ;若不存在,请说明理由; (3)记 $S_n$ 的最小值为 $S_{\min}^n$,求 $\sum_{i=1}^{2 n}\left[(-1)^i S_{\min}^i\right]$.
怎么证明:$n$是偶数时,$S_n$的最小值是$n^2/2$,$n$是奇数时,$S_n$的最小值是$(n^2+1)/2$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:43 GMT+8

Powered by Discuz!

Processed in 0.015444 second(s), 22 queries

× Quick Reply To Top Edit