$A = a + b + c, B = b + c + d, C = c + d + a, D = d + a + b$.$$(A + B + C + D)\left(\frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D}\right) \geq (1 + 1 + 1 + 1)^2 = 16.$$
$$(a + b + c + d)\left(\frac{1}{a + b + c} + \frac{1}{b + c + d} + \frac{1}{c + d + a} + \frac{1}{d + a + b}\right)\ge\frac{16}3$$