Last edited by hbghlyj 2025-6-1 09:49如图,离心率为$\frac{\sqrt{2}}{2}$的椭圆上有$A,B$两点,$A$点关于椭圆的法线为红色直线,它与过点$B$且垂直$AB$的直线交于$C$点,$C$点关于点$B$的对称点为$P$点,法线关于过$A$点水平线的轴对称直线为红色虚线,它与Y轴交于$D$点.当点$B$在椭圆上运动时,试证明$PA+PD$为定值.
Author|1+1=?
Posted 2025-6-1 18:03From mobile phone
Last edited by 1+1=? 2025-6-2 01:08
如图,离心率为$e$的椭圆上有$A,B$两点,$A$点关于椭圆的法线为红色直线,它与过点$B$且垂直$AB$的直线交于$C$点,$C$点关于点$B$的对称点为$P$点,法线关于过$A$点水平线的轴对称直线为红色虚线,它与$X$轴交于$M$点,记$λ=\frac{3-e^2}{e^2-1}$,点$D=λA+(1-λ)M$,当点$B$在椭圆上运动时,试证明$PA+PD$为定值且当取不同A点时$P$点轨迹为离心率不变的椭圆.
Author|1+1=?
Posted 2025-6-2 01:09From mobile phone
Last edited by 1+1=? 2025-6-2 13:08如图,过点$B$的两条直线交椭圆于$A,C$两点,直线$AB,CB$分别围绕点$A$,点$C$旋转一个角度之后的交点为$D$点,$D$点围绕$A$点旋转一个角度得到$P$点。证明:固定每一条直线$BC$,点$A$在椭圆上运动时,$P$的轨迹为椭圆且该椭圆的离心率不随直线$BC$位置改变而改变.