|
original poster
青青子衿
posted 2025-6-8 12:58
- N[(h + 256)^3/h^2 /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[2 Sqrt[2] I])^24, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h + 16)^3/h /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[2 Sqrt[2] I])^24, 50]
- N[1728*KleinInvariantJ[2 Sqrt[2] I], 50]
- N[((h + 27) (h + 243)^3)/h^3 /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[3 Sqrt[2] I])^12, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h + 27) (h + 3)^3)/h /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[3 Sqrt[2] I])^12, 50]
- N[1728*KleinInvariantJ[3 Sqrt[2] I], 50]
- N[(h^2 + 256 h + 4096)^3/(h^4 (h + 16)) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[4 Sqrt[2] I])^8, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^2 + 16 h + 16)^3/(h (h + 16)) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[4 Sqrt[2] I])^8, 50]
- N[1728*KleinInvariantJ[4 Sqrt[2] I], 50]
- N[(h^2 + 250 h + 3125)^3/h^5 /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[5 Sqrt[2] I])^6, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^2 + 10 h + 5)^3/h /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[5 Sqrt[2] I])^6, 50]
- N[1728*KleinInvariantJ[5 Sqrt[2] I], 50]
- N[((h + 12)^3 (h^3 + 252 h^2 + 3888 h + 15552)^3)/(
- h^6 (h + 8)^2 (h + 9)^3) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[6 Sqrt[2] I])^5 DedekindEta[3 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h + 6)^3 (h^3 + 18 h^2 + 84 h + 24)^3)/(h (h + 8)^3 (h + 9)^2) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[6 Sqrt[2] I])^5 DedekindEta[3 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[6 Sqrt[2] I], 50]
- N[((h^2 + 13 h + 49) (h^2 + 245 h + 2401)^3)/h^7 /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[7 Sqrt[2] I])^4, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h^2 + 13 h + 49) (h^2 + 5 h + 1)^3)/h /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[7 Sqrt[2] I])^4, 50]
- N[1728*KleinInvariantJ[7 Sqrt[2] I], 50]
- N[(h^4 + 256 h^3 + 5120 h^2 + 32768 h + 65536)^3/(
- h^8 (h + 4) (h + 8)^2) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[8 Sqrt[2] I])^4 (DedekindEta[4 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I])^2, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^4 + 16 h^3 + 80 h^2 + 128 h + 16)^3/(h (h + 4)^2 (h + 8)) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[8 Sqrt[2] I])^4 (DedekindEta[4 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I])^2, 50]
- N[1728*KleinInvariantJ[8 Sqrt[2] I], 50]
- N[((h + 9)^3 (h^3 + 243 h^2 + 2187 h + 6561)^3)/(
- h^9 (h^2 + 9 h + 27)) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[9 Sqrt[2] I])^3, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h + 3)^3 (h^3 + 9 h^2 + 27 h + 3)^3)/(h (h^2 + 9 h + 27)) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[9 Sqrt[2] I])^3, 50]
- N[1728*KleinInvariantJ[9 Sqrt[2] I], 50]
- N[(h^6 + 260 h^5 + 6400 h^4
- + 64000 h^3 + 320000 h^2
- + 800000 h + 800000)^3/(h^10 (h + 4)^2 (h + 5)^5) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[10 Sqrt[2] I])^3 DedekindEta[5 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^6 + 20 h^5 + 160 h^4
- + 640 h^3 + 1280 h^2
- + 1040 h + 80)^3/(h (h + 4)^5 (h + 5)^2) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[10 Sqrt[2] I])^3 DedekindEta[5 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[10 Sqrt[2] I], 50]
- N[((h^2 + 12 h + 24)^3 (h^6 + 252 h^5 + 4392 h^4
- + 31104 h^3 + 108864 h^2
- + 186624 h + 124416)^3)/(
- h^12 (h + 2) (h + 3)^3 (h + 4)^4 (h + 6)^3) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[12 Sqrt[2] I])^3 (DedekindEta[6 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I])^2 DedekindEta[4 Sqrt[2] I]/
- DedekindEta[3 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h^2 + 6 h + 6)^3 (h^6 + 18 h^5 + 126 h^4
- + 432 h^3 + 732 h^2
- + 504 h + 24)^3)/(h (h + 2)^3 (h + 3)^4 (h + 4)^3 (h + 6)) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[12 Sqrt[2] I])^3 (DedekindEta[6 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I])^2 DedekindEta[4 Sqrt[2] I]/
- DedekindEta[3 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[12 Sqrt[2] I], 50]
- N[((h^2 + 5 h + 13) (h^4
- + 247 h^3 + 3380 h^2
- + 15379 h + 28561)^3)/h^13 /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[13 Sqrt[2] I])^2, 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h^2 + 5 h + 13) (h^4
- + 7 h^3 + 20 h^2
- + 19 h + 1)^3)/h /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[13 Sqrt[2] I])^2, 50]
- N[1728*KleinInvariantJ[13 Sqrt[2] I], 50]
- N[(h^8 + 256 h^7 + 5632 h^6 + 53248 h^5
- + 282624 h^4 + 917504 h^3
- + 1835008 h^2 + 2097152 h
- + 1048576)^3/(h^16 (h + 2) (h + 4)^4 (h^2 + 4 h + 8)) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[16 Sqrt[2] I])^2 DedekindEta[8 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^8 + 16 h^7 + 112 h^6 + 448 h^5
- + 1104 h^4 + 1664 h^3
- + 1408 h^2 + 512 h
- + 16)^3/(h (h + 2)^4 (h + 4) (h^2 + 4 h + 8)) /.
- h -> (DedekindEta[Sqrt[2] I]/
- DedekindEta[16 Sqrt[2] I])^2 DedekindEta[8 Sqrt[2] I]/
- DedekindEta[2 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[16 Sqrt[2] I], 50]
- N[((h^3 + 12 h^2 + 36 h + 36)^3 (h^9 + 252 h^8 + 4644 h^7 + 39636 h^6
- + 198288 h^5 + 629856 h^4 + 1294704 h^3 + 1679616 h^2
- + 1259712 h + 419904)^3)/(
- h^18 (h + 2)^2 (h + 3)^9 (h^2 + 3 h + 3) (h^2 + 6 h + 12)^2) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[18 Sqrt[2] I])^2 (
- DedekindEta[6 Sqrt[2] I] DedekindEta[9 Sqrt[2] I])/(
- DedekindEta[2 Sqrt[2] I] DedekindEta[3 Sqrt[2] I]), 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[((h^3 + 6 h^2 + 12 h + 6)^3 (h^9 + 18 h^8 + 144 h^7 + 666 h^6
- + 1944 h^5 + 3672 h^4 + 4404 h^3 + 3096 h^2
- + 1008 h + 24)^3)/(
- h (h + 2)^9 (h + 3)^2 (h^2 + 3 h + 3)^2 (h^2 + 6 h + 12)) /.
- h -> (DedekindEta[Sqrt[2] I]/DedekindEta[18 Sqrt[2] I])^2 (
- DedekindEta[6 Sqrt[2] I] DedekindEta[9 Sqrt[2] I])/(
- DedekindEta[2 Sqrt[2] I] DedekindEta[3 Sqrt[2] I]), 50]
- N[1728*KleinInvariantJ[18 Sqrt[2] I], 50]
- N[(h^10 + 250 h^9 + 4375 h^8
- + 35000 h^7 + 178125 h^6
- + 631250 h^5 + 1640625 h^4
- + 3125000 h^3 + 4296875 h^2
- + 3906250 h + 1953125)^3/(
- h^25 (h^4 + 5 h^3 + 15 h^2 + 25 h + 25)) /.
- h -> DedekindEta[Sqrt[2] I]/DedekindEta[25 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[Sqrt[2] I], 50]
- N[(h^10 + 10 h^9 + 55 h^8
- + 200 h^7 + 525 h^6
- + 1010 h^5 + 1425 h^4
- + 1400 h^3 + 875 h^2
- + 250 h + 5)^3/(h (h^4 + 5 h^3 + 15 h^2 + 25 h + 25)) /.
- h -> DedekindEta[Sqrt[2] I]/DedekindEta[25 Sqrt[2] I], 50]
- N[1728*KleinInvariantJ[25 Sqrt[2] I], 50]
Copy the Code
|
|