Forgot password
 Register account
View 50|Reply 7

[几何] 倒演得简单结论角为定值

[Copy link]

44

Threads

131

Posts

1

Reputation

Show all posts

1+1=? posted 2025-6-16 23:59 from mobile |Read mode
已知$A,B$是椭圆:$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$上两个定点,$C$为椭圆上的动点,$O$为坐标原点。若直线$CA,CB$与直线$y=\dfrac{ab}{c}$分别交于$E,D$二点,试证:$\angle EOD$为定值. 1000093444.png

44

Threads

131

Posts

1

Reputation

Show all posts

original poster 1+1=? posted 2025-6-17 00:03 from mobile
双曲线版本
已知$A,B$是双曲线:$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$上两个定点,$C$为双曲线上的动点,$O$为坐标原点。若直线$CA,CB$与直线$x=\dfrac{ab}{c}$分别交于$E,D$二点,试证:$\angle EOD$为定值.

44

Threads

131

Posts

1

Reputation

Show all posts

original poster 1+1=? posted 2025-6-17 00:06 from mobile
抛物线版本
已知$A,B$是抛物线$y^2=2px$上两个定点,$C$为抛物线上的动点,$O$为坐标原点。若直线$CA,CB$与直线$x=-2p$分别交于$E,D$二点,试证:$\angle EOD$为定值.

44

Threads

131

Posts

1

Reputation

Show all posts

original poster 1+1=? posted 2025-6-17 00:18 from mobile
证明:
如图,图中黑色虚线部分角为定值,运用两次椭圆等角定理易证。
易知将黑色部分关于红色圆$g$配极倒演得到彩色部分,故命题正确。
抛物线和双曲线同理。
1000093447.png

417

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-6-17 17:58
都是这样高深做法,
有没有初等证明

Comment

我想进lamondian很久前发的一个讨论数学的Q群  posted 2025-6-17 18:18
哪个?  posted 2025-6-17 20:18
好像是一个要付费才能进的  posted 2025-6-17 22:01

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-21 03:30 GMT+8

Powered by Discuz!

Processed in 0.014961 seconds, 26 queries