Forgot password
 Register account
View 48|Reply 2

[几何] 双曲线渐近线五点共圆

[Copy link]

44

Threads

132

Posts

1

Reputation

Show all posts

1+1=? posted 2025-6-17 17:16 |Read mode
知乎一道五点共圆
题目:从双曲线上一点$P$作切线交双曲线的渐近线于$A,B$二点,再过点$P$作垂直$AB$的直线交双曲线对称轴于$C,D$二点,$O$为双曲线中心,证明$O,A,B,C,D$五点共圆. 33e67ab4ba24295d02afeddf4a586311.jpg

44

Threads

132

Posts

1

Reputation

Show all posts

original poster 1+1=? posted 2025-6-17 18:09
Last edited by 1+1=? 2025-6-17 18:15证明如下:
先给出引理:凸四边形$OAFB$中,若$\angle F=\pi-\frac{1}{2}\angle O$且$\angle F和\angle O$是对角,则$\triangle AFB$的外心在$\triangle AOB$的外接圆上. 1000093463.jpg
引理是易证的.
$(1)$证明:$\angle AFB=\pi-\frac{1}{2}\angle AOB$: 1000093458.png
设渐近线$OA,OB$分别与双曲线相切于无穷远点$U,V$,可知$FU\px OA$,$FV\px OB$,由锥线的等角定理可知$FA$平分$\angle PFU$,$FB$平分$\angle PFV$.所以$\angle AFB=\frac{1}{2}(\angle PFU+\angle PFV)=\frac{1}{2}(2\pi-\angle UFV)=\pi-\frac{1}{2}\angle AOB$;
$(2)$证明$PC$是$AB$的中垂线: 1000093471.jpg
熟知双曲线上$P$点的切线交渐近线于$A,B$二点,则$P$是$AB$中点,且$PC$垂直$AB$,故$PC$是$AB$的中垂线;

$(3)$由引理知$\odot AFB$的圆心在$\odot AOB$上,由$PC$是$AB$的中垂线知$\odot AFB$的圆心在$PC$上,故$\odot AFB$的圆心在$PC$和$\odot AOB$的交点上,即$\odot AFB$的圆心是点$C$或点$D$,又$\angle AFB=\pi-\frac{1}{2}\angle AOB>\frac{\pi}{2}$,由钝角三角形的外心在钝角内部知点$C$是$\odot AFB$的圆心,故点$C$在$\odot AOB$上,同时有$\angle ACB=\angle AOB$;

$(4)$由$PC$平分$\angle ACB$,$OD$平分$\angle AOB$知$\angle AOD=\angle ACD$,故$A,O,C,D$四点共圆,又$A,O,B,C$四点共圆,故$A,O,B,C,D$五点共圆.
1000093467.jpg

44

Threads

132

Posts

1

Reputation

Show all posts

original poster 1+1=? posted 2025-6-17 18:32 from mobile
从证明中可知 1000093473.jpg
从双曲线上一点$P$作切线和法线,切线交渐近线于$A,B$二点,法线交虚轴于$C$点,则$△ABC$是以$\angle C$为顶角且大小恒定的等腰三角形。当双曲线渐近线夹角为$60⁰$时,$△ABC$是正三角形。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-23 01:10 GMT+8

Powered by Discuz!

Processed in 0.013497 seconds, 27 queries