|
kuing
posted 2025-6-24 14:03
`n=0` does not hold,应改为 `n\geqslant1`。
当 `n\geqslant1` 时,因为
\[\sum\frac a{c+a}>\sum\frac a{c+a+b}=1,\]
所以只需证明
\[\sum\frac a{b+c}\leqslant\sum\frac{a^n}{b^n+b^{n-1}c},\]
即
\[\sum\frac a{b+c}\left(\frac{a^{n-1}}{b^{n-1}}-1\right)\geqslant0,\]
由轮换对称性,不妨设 `c=\min\{a,b,c\}`,则
\begin{align*}
&\frac a{b+c}\left(\frac{a^{n-1}}{b^{n-1}}-1\right)+\frac b{c+a}\left(\frac{b^{n-1}}{c^{n-1}}-1\right)+\frac c{a+b}\left(\frac{c^{n-1}}{a^{n-1}}-1\right)\\
={}&\frac a{b+c}\left(\frac{a^{n-1}}{b^{n-1}}-1\right)+\frac b{a+c}\left(\frac{b^{n-1}}{a^{n-1}}-1\right)+\frac b{c+a}\left(\frac{b^{n-1}}{c^{n-1}}-\frac{b^{n-1}}{a^{n-1}}\right)+\frac c{a+b}\left(\frac{c^{n-1}}{a^{n-1}}-1\right)\\
={}&\frac{(a^{n-1}-b^{n-1})\bigl(a^{n+1}-b^{n+1}+(a^n-b^n)c\bigr)}{a^{n-1}b^{n-1}(a+c)(b+c)}+\frac{(a^{n-1}-c^{n-1})\bigl(b^{1+n}-c^{1+n}+a(b^n-c^n)\bigr)}{a^{n-1}c^{n-1}(a+b)(a+c)},
\end{align*}
由 `n\geqslant1` 显然有 `(a^{n-1}-b^{n-1})\bigl(a^{n+1}-b^{n+1}+(a^n-b^n)c\bigr)\geqslant0`,由 `c=\min\{a,b,c\}` 显然有 `(a^{n-1}-c^{n-1})\bigl(b^{1+n}-c^{1+n}+a(b^n-c^n)\bigr)\geqslant0`,可见上式非负,故原不等式得证。
|
|