|
kuing
posted 2025-6-23 23:00
由 CS 有
\begin{align*}
\sum x\sqrt{\frac x{x+y}}&\leqslant\sqrt{\sum x^2(y+z)\sum\frac x{(x+y)(y+z)}}\\
&=\sqrt{\frac{\sum x^2(y+z)\sum x(z+x)}{(x+y)(y+z)(z+x)}},
\end{align*}
则只需证
\[2\sum x^2(y+z)\sum x(z+x)\leqslant3(x^2+y^2+z^2)(x+y)(y+z)(z+x),\]
展开可整理为
\[(x+y+z)\sum xy(x-y)^2\geqslant0,\]
显然成立。 |
|