Forgot password
 Register account
View 23|Reply 1

[不等式] 3-variable inequality

[Copy link]

9

Threads

2

Posts

0

Reputation

Show all posts

jhsinutopia posted 2025-6-23 21:07 |Read mode
$x,y,z>0$
Prove that
$\sum_{cyc} x\sqrt{\dfrac{x}{x+y}}\le \sqrt{\dfrac{3(x^2+y^2+z^2)}{2}}$

679

Threads

110K

Posts

209

Reputation

Show all posts

kuing posted 2025-6-23 23:00
由 CS 有
\begin{align*}
\sum x\sqrt{\frac x{x+y}}&\leqslant\sqrt{\sum x^2(y+z)\sum\frac x{(x+y)(y+z)}}\\
&=\sqrt{\frac{\sum x^2(y+z)\sum x(z+x)}{(x+y)(y+z)(z+x)}},
\end{align*}
则只需证
\[2\sum x^2(y+z)\sum x(z+x)\leqslant3(x^2+y^2+z^2)(x+y)(y+z)(z+x),\]
展开可整理为
\[(x+y+z)\sum xy(x-y)^2\geqslant0,\]
显然成立。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-24 19:22 GMT+8

Powered by Discuz!

Processed in 0.012685 seconds, 22 queries