Forgot password
 Register account
View 15|Reply 0

[函数] 求递增函数使 $f(k+1)$ 与 $f(1),\dots,f(2k+1)$ 平均值之差的最小值最大化

[Copy link]

3168

Threads

7931

Posts

48

Reputation

Show all posts

hbghlyj posted 2025-6-26 14:16 |Read mode
考虑定义在 $\mathbb{N}^+$ 上的递增函数 $f$,满足$f(1)=1$.
求这样一个函数 $f$,使得
$$
\inf_{k\inN^+}\left[f(k+1)-\frac{1}{2k+1}\sum_{i=1}^{2k+1}f(i)\right]
$$
取得最大值
对于 $f(k)=k$,则 $\forall k$,$0=f(k+1)-\frac{1}{2k+1}\sum_{i=1}^{2k+1}f(i)$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-27 15:47 GMT+8

Powered by Discuz!

Processed in 0.013647 seconds, 22 queries