|
战巡
posted 2025-6-29 11:35
右边这太难看,首先把每一项改成这样
\[\frac{n!}{(x+1)(x+2)...(x+n+2)}=\frac{n!\Gamma(x+1)}{\Gamma(x+n+3)}=\frac{\Gamma(n+1)\Gamma(x+1)}{\Gamma(x+n+3)}=\frac{\Gamma(x+1)B(n+1,x+2)}{\Gamma(x+2)}\]
然后
\[\sum_{n=0}^\infty\frac{n!\Gamma(x+1)}{\Gamma(x+n+3)}=\sum_{n=0}^\infty\frac{\Gamma(x+1)B(n+1,x+2)}{\Gamma(x+2)}\]
\[=\frac{\Gamma(x+1)}{\Gamma(x+2)}\sum_{n=0}^\infty B(n+1,x+2)\]
\[=\frac{1}{x+1}\sum_{n=0}^\infty\int_0^1t^n(1-t)^{x+1}dt\]
\[=\frac{1}{x+1}\int_0^1(1-t)^xdt\]
\[=\frac{1}{(x+1)^2}\] |
|