Forgot password
 Register account
View 45|Reply 5

[不等式] 求一个有限制条件的分式的最小值

[Copy link]

420

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-7-2 18:25 |Read mode
对任意满足$1\leqslant x\leqslant y\leqslant z\leqslant 4$的实数$x,y,z$,记$f=\dfrac{(1+x)(x+y)(y+z)(z+4)}{xyz}$,求$f$的最小值。

0

Threads

3

Posts

1

Reputation

Show all posts

老司機 posted 2025-7-2 18:44 from mobile
$f=\dfrac{(1+x)(x+y)(y+z)(z+4)}{xyz}$
$ \geqslant \dfrac{(\sqrt[4]{1*x*y*z}+\sqrt[4]{x*y*z*4})^4}{xyz}$
$= (1+\sqrt[4]{4})^4 $  

Comment

请问:分子如何来的?没看懂哩  posted 2025-7-2 19:08

0

Threads

3

Posts

1

Reputation

Show all posts

老司機 posted 2025-7-2 21:46
lemondian 点评
请问:分子如何来的?没看懂哩
IMG_0023.jpeg

Comment

两次柯西么?  posted 2025-7-3 09:07
对,可以理解为先两次 Cauchy 后,再用一次  posted 2025-7-4 11:20

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-4 13:09 GMT+8

Powered by Discuz!

Processed in 0.013203 seconds, 28 queries