Forgot password
 Register account
View 50|Reply 5

[几何] [几何]垂心证角平分

[Copy link]

56

Threads

982

Posts

41

Reputation

Show all posts

乌贼 posted 2025-7-7 22:22 |Read mode
     $ \triangle ABC $中,$ DEF $分别为三顶点在三边上的垂足,$ D $在$ EF $上的垂足为$ G $。求证:$ \angle BGD=\angle CGD $。 1.png

Comment

太难😳  posted 2025-7-8 02:33
是不是老题?  posted 2025-7-8 13:43
还可以证明H为三角形DEF的内心😀  posted 2025-7-9 21:26

56

Threads

982

Posts

41

Reputation

Show all posts

original poster 乌贼 posted 2025-7-8 21:45
如图: 2.png
    $ P、Q $分别为$ B、C $在$ EF $上的垂足,$ K $为$ BC $与$ EF $交点,$ M $在$ FK $上且$ DM\px BF $,$ N $在$ CK $上且$ MN\px FC $。易知$ AC $为$ DM $的垂直平分线。有\[ CD=CN \]\[ \dfrac{BD}{BK}=\dfrac{FM}{FK}=\dfrac{CN}{CK}=\dfrac{DC}{CK}\riff\dfrac{BD}{DC}=\dfrac{BK}{CK}=\dfrac{PB}{QC}=\dfrac{PG}{QG}\\\riff\triangle PGB\sim \triangle QGC\riff\angle PGB=\angle QGC\riff\angle BGD=\angle CGD \]

Comment

不需要垂心,只要BF垂直AC且为角DFE的平分线即可  posted 2025-7-11 21:21

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-12 23:01 GMT+8

Powered by Discuz!

Processed in 0.020169 seconds, 26 queries