Forgot password
 Register account
View 3|Reply 0

[函数] $P(x)=x^4+4px^3-4qx-1$有重根的条件$(p+q)^{2/3}-(p-q)^{2/3}=1$

[Copy link]

3205

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-7-17 09:23 |Read mode
观察到 $P(0)=-1\neq0$,所以任何根 $\alpha$ 都 $\neq0$$$P'(x)=4x^3+12px^2-4q$$解 $P'(\alpha)=0$,$$q=\alpha^3+3p\alpha^2$$代入 $P(\alpha)=0$$$\alpha^4+4p\alpha^3-4q\alpha-1=0\;\Longrightarrow\;3\alpha^4+8p\alpha^3+1=0\;\Longrightarrow\;
8p=-\frac{3\alpha^4+1}{\alpha^3}=-3\alpha-\frac1{\alpha^3}
$$
因此
$$8p=-3\alpha-\alpha^{-3}$$$$8q=-\alpha^3-3\alpha^{-1}$$$$
8(p+q)=-(\alpha^3+3\alpha+3\alpha^{-1}+\alpha^{-3})= -(\alpha+\tfrac1\alpha)^3$$$$8(p-q)=\alpha^3-3\alpha+3\alpha^{-1}-\alpha^{-3}= (\alpha-\tfrac1\alpha)^3.$$
消$\alpha$恰好是$(p+q)^{2/3} - (p-q)^{2/3}=1$,等价于 $P(x)$ 的判别式为零?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-18 09:10 GMT+8

Powered by Discuz!

Processed in 0.011951 seconds, 22 queries