Forgot password
 Register account
View 6|Reply 0

[不等式] 两个不等式及其猜想

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-7-18 10:11 |Read mode
命题1:设$a,b$为正实数,$m,n$为非负实数,且$k=2m+n$,求证:$a^mb^m(a^n+b^n)\leqslant 2(\dfrac{a+b}{2})^k$.

命题2:设$a,b$为正实数,$m,n$为非负实数,且$k=2m+n,k\in(0,1]$,求证:$a^mb^m(a^n+b^n)\leqslant a^k+b^k\leqslant 2(\dfrac{a+b}{2})^k$.

另外,命题1,2能不能推广?

猜想1:设$a_1,a_2,...,a_n$为正实数,$m,n$为非负实数,且$k=2m+n$,求证:$a_1^ma_2^m\cdots a_n^m(a_1^n+a_2^n+\cdots +a_n^n)\leqslant n(\dfrac{a_1+a_2+\cdots +a_n}{n})^k$.

猜想2:设$a_1,a_2,...,a_n$为正实数,$m,n$为非负实数,且$k=2m+n,k\in(0,1]$,求证:$a_1^ma_2^m\cdots a_n^m(a_1^n+a_2^n+\cdots +a_n^n)\leqslant a_1^k+a_2^k+\cdots +a_n^k \leqslant n(\dfrac{a_1+a_2+\cdots +a_n}{n})^k$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 03:57 GMT+8

Powered by Discuz!

Processed in 0.016407 seconds, 22 queries