Forgot password
 Register account
View 4|Reply 1

[几何] 球面每个点p与其像f(p)的距离都在 1 以内,那么 f 是满射

[Copy link]

3237

Threads

7855

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-7-24 09:57 |Read mode
连续映射 $f:S^n\to S^n$ 满足对任意 $p\in S^n$ 有 $\|f(p)-p\|<1$。  
证明:$f$ 是满射。

3237

Threads

7855

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-7-24 09:58
定义同伦
$h_t(p)=\frac{\,t\,p+(1-t)\,f(p)}{\|\,t\,p+(1-t)\,f(p)\|},h_0(p)=f(p)$;$h_1(p)=p$.
为保证分母非零,利用三角不等式:  
$$\|t\,p+(1-t)f(p)\|=\|f(p)+t(p-f(p))\|\ge\|f(p)\|-t\|p-f(p)\|=1-t\|p-f(p)\|>0$$
通过同伦可知 $\deg f=\deg(\text{id})=1$.  
若 $f$ 非满射,则取 $x\in S^n\setminus f(S^n)$,由于 $S^n\setminus\{x\}$ 是可缩的,复合后可得到 $f$ 的 nullhomotopy,故应有 $\deg f=0$,与前述 $\deg f=1$ 矛盾。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-25 21:12 GMT+8

Powered by Discuz!

Processed in 0.013345 seconds, 22 queries