|
xenaproject 的文章A computer-generated proof that nobody understands
数学家眼中“无聊”的 Bruck loop
“Nobody in my department cares about Bruck loops. People care about objects which it takes an entire course to define, not a paragraph.” — xenaproject, July 6, 2019 虽然 Bruck loop的机算证明长达 30000 行,甚至有 J. D. Phillips 与 David Stanovský 在 2012 年于《Communications in Algebra》上发表的论文(已上传至 ResearchGate)加以阐述,但由于其定义只需 19 条公理、理论背景浅显,研究人员普遍认为其学术价值有限。
“They are working on results about objects which in some cases take hundreds of axioms to define, or are even more complicated: sometimes even the definitions of the objects we study can only be formalised once one has proved hard theorems.” — xenaproject, July 6, 2019 数学家更倾向于研究那些定义繁复、依赖多项前置定理的对象,而非短短一段文字就可定义的结构
Shimura variety需先构建 Hermitian 对称空间、约化代数群及其同余子群的框架,才能在此基础上定义;
CM 阿贝尔簇理论是理解 Shimura variety公理化的关键前提,涉及复乘理论中对端同态环的深刻研究;
全局类域论构成了 CM 阿贝尔簇定理的基础,描述了全局数域可换扩张与其本原子群之间的对应关系;
étale cohomology 作为代数簇的同调工具,需要引入 Grothendieck 的 étale 拓扑及其相应的同调群定义。
This is all to do with subtleties such as fashions in mathematics, and which areas are regarded as important (that is, worth funding). — xenaproject, July 6, 2019 研究热点往往受资助机构偏好影响。镜像对称、完美域空间、特征 p 下代数簇的规范环、Shimura 丽形的 étale 同调以及 Langlands 思想等领域因其深度更易获得项目支持。对于仅靠逻辑游戏式的结构和短小公理系统,数学界普遍不屑投入,认为其学术回报与资助可能性不足。
I once went to an entire 24 lecture course by John Coates which assumed local class field theory and deduced the theorems of global class field theory. I have read enough of the book by Shimura and Taniyama on CM abelian varieties to know what’s going on there. … And then there is still the small matter of the definition of etale cohomology. — xenaproject, July 6, 2019 作者回忆,为了真正理解 Shimura variety,他先后参加了约翰·科茨(John Coates)关于局部与全局类域论的 24 次专题讲座,阅读了 Shimura & Taniyama 关于 CM 阿贝尔簇的著作,并在历经约 100 小时研读后,才得以正式给出 Shimura variety在数域上的定义,随后还需掌握 étale 同调的构造与公理化流程。 |
|