423
909
0
Show all posts
Bump
55
156
2
根据 $a+2=a+2$,我们有 $\alpha+\beta+\gamma=\alpha \beta \gamma+2$,即 \[ \frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}=1 \] 另一方面,把 $2 a+b$ 看作 $a+a+b$,两个 $a$ 分别用 $-(\alpha+\beta+\gamma)$ 和 $-(\alpha \beta \gamma+2)$ 取代,条件即 \[ (1-\alpha)(1-\beta)(1-\gamma) \geq 27 \] 现在我们要证明的是 \[ \frac{1}{\sqrt[3]{1-\alpha}}+\frac{1}{\sqrt[3]{1-\beta}}+\frac{1}{\sqrt[3]{1-\gamma}} \geq 0 \] 根据 $a^3+b^3+c^3-3 a b c=(a^2+b^2+c^2-a b-a c-b c)(a+b+c)$,只需证 \[ \frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}-\frac{3}{\sqrt[3]{(1-\alpha)(1-\beta)(1-\gamma)}} \geq 0 \] 证毕
$\LaTeX$ formula tutorial Reply post To last page
Mobile version
2025-8-2 08:20 GMT+8
Powered by Discuz!
Processed in 0.014052 seconds, 23 queries