Forgot password
 Register account
View 36|Reply 2

[不等式] 2025年“剑邑杯”中国东南地区数学夏令营

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-7-31 21:27 |Read mode
2025 年东南地区数学奥林匹克

高一组第二天
1.设 $f(x)=x^3+a x^2+b x+a+2$ 的三个根 $\alpha, \beta, \gamma \neq 1$,且 $2 a+b \geq 24$.求证:
$$
\frac{1}{\sqrt[3]{\alpha-1}}+\frac{1}{\sqrt[3]{\beta-1}}+\frac{1}{\sqrt[3]{\gamma-1}} \leq 0
$$

55

Threads

156

Posts

2

Reputation

Show all posts

1+1=? posted 2025-8-1 22:21
搬运,星神的操作
根据 $a+2=a+2$,我们有 $\alpha+\beta+\gamma=\alpha \beta \gamma+2$,即
\[
\frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}=1
\]
另一方面,把 $2 a+b$ 看作 $a+a+b$,两个 $a$ 分别用 $-(\alpha+\beta+\gamma)$ 和 $-(\alpha \beta \gamma+2)$ 取代,条件即
\[
(1-\alpha)(1-\beta)(1-\gamma) \geq 27
\]
现在我们要证明的是
\[
\frac{1}{\sqrt[3]{1-\alpha}}+\frac{1}{\sqrt[3]{1-\beta}}+\frac{1}{\sqrt[3]{1-\gamma}} \geq 0
\]
根据 $a^3+b^3+c^3-3 a b c=(a^2+b^2+c^2-a b-a c-b c)(a+b+c)$,只需证
\[
\frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}-\frac{3}{\sqrt[3]{(1-\alpha)(1-\beta)(1-\gamma)}} \geq 0
\]
证毕
据说题目不严谨无法保证所有根都是实根

Comment

NB  posted 2025-8-1 22:21

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-2 08:20 GMT+8

Powered by Discuz!

Processed in 0.014052 seconds, 23 queries