Forgot password
 Register account
View 15|Reply 2

[数列] 数列裂项有一般的方法吗

[Copy link]

210

Threads

275

Posts

1

Reputation

Show all posts

hjfmhh posted 2025-8-1 21:21 |Read mode
数列$$c_n=\frac{2^n(1-n)}{n(n+1)}=\frac{2^n}{n}-\frac{2^{n+1}}{n+1}$$
数列$$b_n=\frac{n+2}{n(n+1) 2^n}=\frac{1}{n 2^{n-1}}-\frac{1}{(n+1) 2^n}
$$最近做题时碰到两道数列题,这种类型的数列通项怎么裂开来的,等号右边是可以化简成左边,但怎么从左边裂开成右边的形式?有一般的方法吗?

210

Threads

275

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2025-8-1 21:55
这类题是不是待定系数法分裂的,还是有其它妙解一步到位的?\begin{align*}
\frac{2^n(1-n)}{n(n+1)}
&=\frac{2^n}{\alpha n+\beta}-\frac{2^{n+1}}{\alpha(n+1)+\beta}\\
&=\frac{2^n[\alpha(n+1)+\beta-2(\alpha n+\beta)]}{(\alpha n+\beta)(\alpha(n+1)+\beta)}\\
&=\frac{2^n(-\alpha n+\alpha-\beta)}{(\alpha n+\beta)(\alpha(n+1)+\beta)}\\
&=\frac{2^n(-\alpha n+\alpha-\beta)}{\alpha^2n^2+(\alpha^2+2\alpha\beta
)n+\alpha\beta+\beta^2}
\end{align*}
参数需要满足
\[
\begin{cases}
\frac{\alpha-\beta}{-\alpha}=-1\\
\alpha\beta+\beta^2=0\\
\alpha^2=\alpha^2+2\alpha\beta
\end{cases}
\implies\beta=0,\ \alpha=1
\]回代得
\[
\frac{2^n(1-n)}{n(n+1)}
=\frac{2^n}{n}-\frac{2^{n+1}}{n+1}
\]

210

Threads

275

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2025-8-1 21:44
hjfmhh 发表于 2025-8-1 21:06
这类题是不是待定系数法分裂的,还是有其它妙解一步到位的?
\begin{align*}
\frac{n+2}{n(n+1)2^{n-1}}
&= \frac{1}{2n+\beta}\frac{1}{2^n}
   - \frac{1}{2(n+1)+\beta}\frac{1}{2^{n+1}}\\
&= \frac{1}{2^{n+1}}
   \biggl[
\frac{2\bigl(2(n+1)+\beta\bigr)-(2n+\beta)}
        {(2n+\beta)\bigl(2(n+1)+\beta\bigr)}
   \biggr]\\
&= \frac{1}{2^{n+1}}
   \frac{2n + 4 + \beta}
         {4n^2 + (4 + 4\beta)\,n +2\beta+\beta^2}\\
&= \frac{1}{2^{n-1}}
   \frac{2n + 4 + \beta}
         {4\bigl(4n^2 + (4 + 4\beta)n +2\beta+\beta^2\bigr)}
\end{align*}
参数需要满足\[
\begin{cases}
\displaystyle \frac{4+\beta}{2} = 2\\
2\beta+\beta^2=0\\
4 = 4+ 4\beta
\end{cases}
\quad\Longrightarrow\quad \beta=0
\]回代得
\begin{align*}
\frac{n+2}{2(n+1)2^{n-1}}
&= \frac{1}{n}\frac{1}{2^{n-2}}
   - \frac{1}{n+1}\frac{1}{2^{n-1}}\\
&= \frac{1}{4}\Bigl(\frac{1}{n2^n}-\frac{1}{(n+1)2^{n+1}}\Bigr)
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-3 11:16 GMT+8

Powered by Discuz!

Processed in 0.014521 seconds, 22 queries