|
original poster
hjfmhh
posted 2025-8-1 21:55
这类题是不是待定系数法分裂的,还是有其它妙解一步到位的?\begin{align*}
\frac{2^n(1-n)}{n(n+1)}
&=\frac{2^n}{\alpha n+\beta}-\frac{2^{n+1}}{\alpha(n+1)+\beta}\\
&=\frac{2^n[\alpha(n+1)+\beta-2(\alpha n+\beta)]}{(\alpha n+\beta)(\alpha(n+1)+\beta)}\\
&=\frac{2^n(-\alpha n+\alpha-\beta)}{(\alpha n+\beta)(\alpha(n+1)+\beta)}\\
&=\frac{2^n(-\alpha n+\alpha-\beta)}{\alpha^2n^2+(\alpha^2+2\alpha\beta
)n+\alpha\beta+\beta^2}
\end{align*}
参数需要满足
\[
\begin{cases}
\frac{\alpha-\beta}{-\alpha}=-1\\
\alpha\beta+\beta^2=0\\
\alpha^2=\alpha^2+2\alpha\beta
\end{cases}
\implies\beta=0,\ \alpha=1
\]回代得
\[
\frac{2^n(1-n)}{n(n+1)}
=\frac{2^n}{n}-\frac{2^{n+1}}{n+1}
\] |
|