Forgot password
 Register account
View 22|Reply 1

[函数] 求和$\frac{1}{1+2^{n}x}$

[Copy link]

3273

Threads

7885

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-8-5 16:11 |Read mode
设$S(x)=\sum_{n=0}^\infty\frac{1}{1+2^{n}x}$,$g(x)=\log_{2}(x)+S(x)$,则$$\lim_{x\to 0^+}g(x)=\frac12$$

3273

Threads

7885

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-8-5 16:37
\begin{align*}g(x) - g(x/2^N)&=\log_2(x)-\log_2(x/2^N)+\sum_{n=0}^\infty\frac{2^{-n}}{2^{-n}+x}-\sum_{n=0}^\infty\frac{2^{N-n}}{2^{N-n}+x}\\&=N-\sum_{k=1}^N \frac{2^k}{2^k+x}\\&=\sum_{k=1}^N \frac{x}{2^k+x}\end{align*}
假设极限 $L = \lim_{y \to 0^+} g(y)$ 存在。取 $N \to \infty$,则 $x/2^N \to 0$,因此 $g(x/2^N) \to L$。这给出了:
$$g(x) - L =\sum_{k=1}^\infty \frac{x}{2^k+x}$$
上式对于任何 $x > 0$ 都成立。对于 $x=1$ 得:
$$g(1) - L=\sum_{k=1}^\infty \frac{1}{2^k+1}=S(1)-\frac12$$
代入 $g(1) = S(1) + \log_2(1) = S(1)$ 得:
$$L = \frac{1}{2}$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-6 17:22 GMT+8

Powered by Discuz!

Processed in 0.012126 seconds, 22 queries