Forgot password?
 Register account
View 2367|Reply 0

[不等式] 来自人教群的一道简单3元轮换分式不等式

[Copy link]

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2013-8-27 22:00 |Read mode
QQ截图20130827215937.png
\begin{align*}
\sum\frac{b^3c}{a^3b+a^2c^2}&=\sum\frac{(b^2c)^2}{a^3b^2c+a^2bc^3} \\
& \geqslant \frac{\left( \sum b^2c \right)^2}{\sum(a^3b^2c+a^2bc^3)} \\
& =\frac{\left( \sum b^2c \right)^2}{abc\sum(a^2b+c^2a)} \\
& =\frac{\sum b^2c}{2abc} \\
& \geqslant \frac32.
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:52 GMT+8

Powered by Discuz!

Processed in 0.017861 second(s), 24 queries

× Quick Reply To Top Edit