Forgot password?
 Create new account
View 2304|Reply 1

[不等式] 三元不等式

[Copy link]

4

Threads

23

Posts

154

Credits

Credits
154
QQ

Show all posts

pxchg1200 Posted at 2013-8-29 11:04:01 |Read mode
If $a,b,c$ are positive real numbers such that $ab+bc+ca=3$, then

\[ \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge\sqrt{4(a+b+c)+6}. \]

Let's solution say the method!

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted at 2013-8-29 11:50:05
回复 1# pxchg1200
两边平方得
$$\sum{(\sqrt{a^2+3}-a)}\geqslant 3$$
令$a=\sqrt{3}\cot A,b=\sqrt{3}\cot B,c=\sqrt{3}\cot C,$其中$A,B,C\in (0,\frac{\pi}{2})$
那么$$\sqrt{a^2+3}-a=\sqrt{3}\tan\dfrac{A}{2},$$
于是只需证明$$\sum{\tan\dfrac{A}{2}}\geqslant \sqrt{3}$$
这是显然的!

手机版Mobile version|Leisure Math Forum

2025-4-21 19:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list