Forgot password?
 Create new account
View 1680|Reply 4

反证法一例,老题

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-8-30 11:26:53 |Read mode
未命名.jpg
假设$a^2+b^2>1$,那么可得$b^2>1-a^2,a^2>1-b^2$
如此条件为$\frac{a}{\sqrt{1-b^2}}+\frac{b}{\sqrt{1-a^2}}>\frac{a}{a}+\frac{b}{b}=2$
假设$a^2+b^2<1$,也类似,如此$a^2+b^2=1$
三角换元,或式子恒等变形估计也行.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-8-30 11:55:22
Last edited by realnumber at 2013-8-30 12:04:00\[f(a,b)=\frac{a}{\sqrt{1-b^2}}+\frac{b}{\sqrt{1-a^2}}\]
固定a,是b的增函数,固定b,是a的增函数,上面的证法可以这个角度理解.
恒等变形如下:
\[\frac{a}{\sqrt{1-b^2}}+\frac{b}{\sqrt{1-a^2}}=2=\frac{\sqrt{1-b^2}}{\sqrt{1-b^2}}+\frac{\sqrt{1-a^2}}{\sqrt{1-a^2}}\]
\[0=\frac{a-\sqrt{1-b^2}}{\sqrt{1-b^2}}+\frac{b-\sqrt{1-a^2}}{\sqrt{1-a^2}}\]
\[0=\frac{a^2+b^2-1}{\sqrt{1-b^2}(a+\sqrt{1-b^2})}+\frac{b-1+a^2}{\sqrt{1-a^2}(b+\sqrt{1-a^2})}\]
因为$a>0,b>0$,
\[\frac{1}{\sqrt{1-b^2}(a+\sqrt{1-b^2})}+\frac{1}{\sqrt{1-a^2}(b+\sqrt{1-a^2})}>0\]
所以$a^2+b^2-1=0$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-30 12:13:03

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-8-30 17:38:29
Last edited by realnumber at 2013-9-4 09:54:00其实可以推广为
$a,b\in (0,m),f(x)在(0,m)上单调递增且f(x)>0,若\frac{f(a)}{f(m-b)}+\frac{f(b)}{f(m-a)}=2,有a+b=m成立$
\[a,b,c\in (0,1),\frac{f(a+c)}{f(1-b)}+\frac{f(a+b)}{f(1-c)}+\frac{f(b+c)}{f(1-a)}=3,then, a+b+c=1\]
...
从推广可以得出1楼解法才是这个问题的一般性解法,当然不一定要写成反证法形式,至于三角和恒等变形则不是.
$a,b\in (0,m),f(x)在(0,m)$上单调,若$(f(a)-f(m-b))(f(b)-f(m-a))\le0$,有$a+b=m$成立.
$a,b\in (0,m)$,$f(x)在(0,m)上单调递增且f(x)>1$,若$\log _{f(a)}{f(m-b)}+\log _{f(b)}{f(m-a)}=2$,有$a+b=m$成立.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-8-30 17:53:53
QQ截图20130830175052.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list