Forgot password?
 Create new account
View 6720|Reply 29

[几何] 求角的取值范围(全国高中数学联赛 2006年北方赛区)

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-12-17 17:35:21 |Read mode
Last edited by isee at 2013-12-23 11:22:00题目:

已知$AD$是$\triangle ABC$边$BC$上的高,且$BC+AD=AB+AC$。
求$\angle A$ 的取值范围。

答案推荐
从15楼方向到17楼的补充,这个解,解得太帅了!17楼的这个半角正节,及内切圆太妙太妙!
成功的避开三角函数,是我喜欢的类型。

goft 在17楼的详细:







========================================

我们来看看当年的标准参考答案


2006bf-2nd-da.png

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-12-17 18:18:18
Last edited by 战巡 at 2013-12-18 14:38:00回复 1# isee


两边平方,得到
\[BC^2+2BC·AD+AD^2=AB^2+AC^2+2AB·AC\]
\[4S+AD^2=AB^2+AC^2-BC^2+2AB·AC=2AB·AC·\cos(A)+2AB·AC\]
\[\frac{4S}{AB·AC}+\frac{AD}{AB}·\frac{AD}{AC}=2\cos(A)+2\]
\[2\sin(A)+\cos(∠DAB)\cos(∠DAC)=2\cos(A)+2\]
\[2\sin(A)+\frac{\cos(∠DAB+∠DAC)}{2}+\frac{\cos(∠DAB-∠DAC)}{2}=2\cos(A)+2\]
\[2\sin(A)+\frac{\cos(A)}{2}-2\cos(A)=-\frac{\cos(∠DAB-∠DAC)}{2}+2\]
\[2\sin(A)-\frac{3\cos(A)}{2}=-\frac{\cos(∠DAB-∠DAC)}{2}+2\]
然后这范围就好求了

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2013-12-17 21:59:34
回复 2# 战巡


果然是战巡的菜,

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 08:28:01
$D$点还不能在$B,C$两点及其延长线上,不好构造几何模型。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2013-12-18 08:41:21
Last edited by isee at 2013-12-18 14:37:00回复 4# 乌贼

其实原题配有图,图中D在BC上,所以主楼才说D在BC边上。

现在将D在BC边上去掉了。

===========================


是有难度,战巡那个也不能一眼得到结果……

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-12-18 09:09:28
回复 5# isee


这个不用的,A肯定是钝角,D只能在线段BC上

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

wzxsjz Posted at 2013-12-18 11:57:36
2sin(A)+sin(∠DAB)sin(∠DAC)=2cos(A)+2

2sin(A)+cos(∠DAB+∠DAC)2−cos(∠DAB−∠DAC)2=2cos(A)+2
好像反了

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 13:21:29
回复 6# 战巡
$\angle A$不一定为钝角
211.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 13:29:30
回复 5# isee
结果是$[\arccos\frac7{25},180^\circ)$吗?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2013-12-18 13:50:20
回复 9# 乌贼


$[2\arctan\dfrac34,\dfrac \pi 2)$

我仅仅知道结果……

而这个结果正好说明战巡的推测不准确

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2013-12-18 14:39:46
Last edited by isee at 2013-12-18 14:47:00
$D$点还不能在$B,C$两点及其延长线上,不好构造几何模型。
乌贼 发表于 2013-12-18 08:28

   

找到原题了,原题对D点没有限制。

现在改过来了。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-12-18 14:42:11
之前太大意了.......

现在改了,那个方程确实可以解出$[2\arctan(\frac{3}{4}),\frac{\pi}{2})$这一截
不过还多一块——$[2\arctan(7),\pi)$这一段,你们有空看看这段是神马情况

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2013-12-18 14:48:23
Last edited by isee at 2013-12-18 15:01:00回复 12# 战巡

还是厉害~


简单的“验证”了一下,当AD平分角A时,用2楼解出的结果便是 2arctan0.75,(钝角情况被我无视了,哈哈)

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 15:51:14
回复 10# isee
$2\arctan\frac34$就是8楼的角,$\frac{\pi}2$怎么求?
原来是联赛题,被$isee$忽悠了

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 16:33:53
如图:构建$\frac{x^2}{25}+\frac{y^2}{16}=1$的椭圆,其两焦点和短轴顶点组成的三角形满足条件,再构建焦点在$X$轴上焦距为$6$,短轴$b=m,(0<m<4)$,有
\[6<2\sqrt{m^2+9}<6+m\]这样一来,在椭圆的第一象限(其他象限也有)图形上总能找到一点(其到$X$轴的距离为$2\sqrt{m^2+9}-6$)满足条件。例如$m=2$……
可还是得不出任何结论。 212.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 17:52:47
回复 15# 乌贼
$m>4$时也存在满足条件的点

9

Threads

55

Posts

374

Credits

Credits
374

Show all posts

goft Posted at 2013-12-18 21:41:26

RE: 求角的取值范围(全国高中数学联赛 2006年北方赛区)

Last edited by goft at 2013-12-22 19:31:00借乌贼兄思路发的一个解法,不知道有问题没
]0RW{A%5]UZHH7~ZYYH3`GJ.jpg
QQ图片20131222193020.jpg

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-12-18 23:13:01
Last edited by 乌贼 at 2013-12-19 03:32:00回复 17# goft
偶还是不知道结论,PS能给出答案吗!

9

Threads

55

Posts

374

Credits

Credits
374

Show all posts

goft Posted at 2013-12-19 10:21:03
$当BC变大时,\angle BAD和 \angle DAC 都变大$

9

Threads

55

Posts

374

Credits

Credits
374

Show all posts

goft Posted at 2013-12-19 10:23:09
有问题,不知道怎么解释了……

手机版Mobile version|Leisure Math Forum

2025-4-21 19:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list