Forgot password?
 Create new account
View 4156|Reply 14

[不等式] 转一个不等式

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted at 2013-8-31 23:15:31 |Read mode
Last edited by hbghlyj at 2025-3-22 01:24:14已知$n\inN^*$,求证
$$\sum_{k=1}^{n}\dfrac{k}{2^k+(-1)^k}<\dfrac{37}{15}$$

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-9-1 16:31:29
先水饺…今晚再来玩玩这东东,感觉不难…
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-1 16:32:50
回复 2# 零定义

汗,这个时间睡觉?

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-9-1 16:40:08
回复 3# kuing
累困交加…况且下雨天不睡觉多浪费~
睡自己的觉,让别人说去...

4

Threads

23

Posts

154

Credits

Credits
154
QQ

Show all posts

pxchg1200 Posted at 2013-9-1 18:01:04
Last edited by hbghlyj at 2025-3-22 01:25:24\begin{aligned} \sum_{k=1}^n \frac{k}{2^k+(-1)^k}&<\sum \frac{k}{2^k+(-1)^k}=\sum\left(\frac{2 k-1}{2^{2 k-1}-1}+\frac{2 k}{2^{2 k}+1}\right) \\ &=\sum \frac{2 n * 2^{2 n}-2^{2 n}+2 n-1+2 n * 2^{2 n-1}-2 n}{\left(2^{2 n-1}-1\right)\left(2^{2 n}+1\right)} \\ &=\sum \frac{3 n * 2^{2 n}-\left(2^{2 n}+1\right)}{\left(2^{2 n-1}-1\right)\left(2^{2 n}+1\right)} \\ &<\frac{7}{5}+\sum_{n \geq 2} \frac{3 n-1}{2^{2 n-1}-1} \\ &<\frac{7}{5}+\frac{5}{7}+\frac{5}{31}+6 \sum_{n \geq 4}^{4^n} \\ &=\frac{7}{5}+\frac{5}{7}+\frac{5}{31}+2\left(\frac{1}{16}+\frac{\frac{1}{4^4}}{1-\frac{1}{4}}\right)  \\ &<\frac{37}{15}\end{aligned}

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-1 18:25:56
回复 5# pxchg1200

第一个小于号是啥意思?右边开始的$\sum$表示无穷求和吗?

PS、不是你的笔迹吧?

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-9-1 18:50:10
我的方法差不多的,给抢在前面了…
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-9-1 20:16:49
回复 7# 零定义

谁要你睡觉

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

 Author| reny Posted at 2013-9-1 20:21:23
Last edited by hbghlyj at 2025-3-22 01:26:31\begin{aligned}
\sum_{k=1}^n \frac{k}{2^k+(-1)^k} & <1+\frac{2}{5}+\underbrace{\frac{3}{7}+\frac{4}{17}}_{<\frac{2}{3}}+\sum_{k=1}^n \frac{k}{2^k-1}<1+\frac{2}{5}+\frac{2}{3}+\sum_{k=5}^n \frac{5}{31}\left(\frac{37}{62}\right)^{n-5} \\
& <1+\frac{2}{5}+\frac{2}{3}+\frac{5}{31} \times \frac{1}{1-\frac{37}{62}}=\frac{37}{15}
\end{aligned}
\begin{aligned}
& \sum_{k=1}^n \frac{k}{2^k+(-1)^k}<1+\frac{2}{5}+\frac{3}{7}+\frac{4}{17}+\frac{5}{31}+\frac{6}{65}+\sum_{k=7}^n \frac{k}{2^k-1} \\
& <1+\frac{2}{5}+\frac{3}{7}+\frac{4}{17}+\frac{5}{31}+\frac{6}{65}+\sum_{k=7}^n \frac{5}{31}\left(\frac{3}{5}\right)^{n-5} \\
& <1+\frac{2}{5}+\underbrace{\frac{3}{7}+\frac{4}{17}}_{<2 / 3}+\frac{5}{31}+\frac{6}{65}+\frac{5}{31} \cdot \frac{\left(\frac{3}{5}\right)^2}{1-\frac{3}{5}} \\
& <1+\frac{2}{5}+\underbrace{\frac{2}{3}}_{<2 / 5}+\underbrace{\frac{5}{31}+\frac{6}{65}+\frac{9}{62}}<1+\frac{2}{5}+\frac{2}{3}+\frac{2}{5}=\frac{37}{15}
\end{aligned}
不知道将原式放缩为等比数列是怎么来的?

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-9-5 21:03:42
Last edited by hbghlyj at 2025-3-22 01:25:47虽然我的方法和px的差不多,但还是把它贴上来吧...
当 $n=1$ 时,$\frac{1}{2-1}=1<\frac{37}{15}$
当 $n \geq 2$ 时,
先证:$\frac{2 n}{2^{2 n}+1}+\frac{2 n+1}{2^{2 n+1}-1}<\frac{2 n}{2^{2 n}}+\frac{2 n+1}{2^{2 n+1}}$
\[
\Leftrightarrow \frac{(6 n+1) 2^{2 n}+1}{\left(2^{2 n}+1\right)\left(2^{2 n+1}-1\right)}<\frac{6 n+1}{2^{2 n+1}} \Leftrightarrow(6 n-1) 2^{2 n}>6 n+1 \Leftrightarrow 2^{2 n}>\frac{6 n+1}{6 n-1}
\]
因为 $2^{2 n} \geq 4>\frac{7}{5} \geq 1+\frac{2}{6 n-1}$ ,所以 $\frac{2 n}{2^{2 n}+1}+\frac{2 n+1}{2^{2 n+1}-1}<\frac{2 n}{2^{2 n}}+\frac{2 n+1}{2^{2 n+1}}$而 $\frac{2}{2^2+1}+\frac{3}{2^3-1}=\frac{29}{35}<\frac{101}{120}=\frac{2}{2^2}+\frac{3}{2^3}-\frac{1}{30}$(这个是根据答案凑的)此时,
\[
\begin{aligned}
& \sum_{k=1}^n \frac{k}{2^k+(-1)^k}<1+\sum_{k=1}^n\left(\frac{2 k}{2^{2 k}+1}+\frac{2 k+1}{2^{2 k+1}-1}\right)-\frac{1}{30}<\frac{29}{30}+\sum_{k=1}^n\left(\frac{2 k}{2^{2 k}}+\frac{2 k+1}{2^{2 k+1}}\right) \\
< & \frac{29}{30}+2 \times\left(\frac{1}{2}+\frac{\frac{1}{8}}{1-\frac{1}{2}}\right)=\frac{37}{15}
\end{aligned}
\]

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2013-9-24 10:29:22
回复 10# 睡神


    最后一步求和不对吧?   怎么会$$< \dfrac{29}{30}+2\times \left(\dfrac12+\dfrac{\dfrac18}{1-\dfrac12}\right)=\cdots$$
007
123

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-9-24 11:12:24
回复 11# 007
啊?错位相减取极限,算错了吗?
除了不懂,就是装懂

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2013-9-26 08:44:43
回复 12# 睡神


    好像是算错了,那个$\dfrac18$应该是$\dfrac14$吧?
007
123

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-9-26 10:44:15
回复 13# 007
啊?我两边乘以1/2,然后错位相减,怎么会是1/4的?不解…
除了不懂,就是装懂

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2013-9-26 12:52:36
回复 14# 睡神


    那我再试一试,如果有问题再发,没问题就匿了
007
123

手机版Mobile version|Leisure Math Forum

2025-4-22 02:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list