Forgot password?
 Create new account
View 3389|Reply 17

[几何] 一道解析几何,求几何解释!

[Copy link]

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

福州小江 Posted at 2013-9-8 22:49:43 |Read mode
QQ图片20130908224749.jpg

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

 Author| 福州小江 Posted at 2013-9-8 22:50:20
第二问!!!!!!!!!!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-9-8 23:28:34
先上下拉伸成圆,显然不改变三者长度,如图所示。

QQ截图20130908232652.png

依题意可知此时 $ABCD$ 为正方形,其边长为 $a$,则由相似比例易得
\begin{align*}
\frac{EF}{DC}&=\frac{PG}{PH}\iff EF=\frac{a\cdot PG}{PH}, \\
\frac{EA}{HD}&=\frac{AD}{PH}\iff EA=\frac{a\cdot GA}{PH}, \\
\frac{FB}{HC}&=\frac{BC}{PH}\iff FB=\frac{a\cdot GB}{PH},
\end{align*}

\[EF^2=EA\cdot FB\iff PG^2=GA\cdot GB,\]
显然成立,得证。


PS、少点感叹号。

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-9-8 23:31:48
回复 1# 福州小江
波兄?
除了不懂,就是装懂

11

Threads

30

Posts

234

Credits

Credits
234

Show all posts

nash Posted at 2013-9-8 23:32:02
犀利!!!!!!

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2013-9-8 23:35:59
题目来源是?

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

 Author| 福州小江 Posted at 2013-9-8 23:38:41
一道江苏模拟卷上的题目

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-9-8 23:39:11
不拉伸显然也可以,最终等价为 $PA$ 与 $PB$ 斜率之积的结论。
拉伸只是为了方便用纯初中几何做。

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

 Author| 福州小江 Posted at 2013-9-8 23:57:15
回复 4# 睡神


    你是?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2015-12-5 02:03:57
刚才QQ空间看到一类似题:
QQ截图20151205020416.jpg

用类似上述证法应该可行,大家可以试下。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2015-12-5 08:31:27
回复 10# kuing

以前在人教论坛初中版见过yes94出的一样的题,maven解答过,他是把$AB$从$P$点投影到$CD$上,就是$PA,PB$这两条射线分别交$CD$于$A',B'$
要证的也就是$A'C^2+B'D^2=A'B'^2$,就是要证$(A'D+AB)^2+(B'C+AB)^2=(A'D+B'C+AB)^2$
最后只要证$AB^2=2A'D\cdot B'C$
$A'D=BC\cot\angle PAB,B'C=BC\cot\angle PBA$,所以$2A'D\cdot B'C=2BC^2=AB^2$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2015-12-5 13:28:12
回复 11# abababa

不错,这个挺简洁

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-12-5 22:36:18
回复 11# abababa
abababa记得这么清楚?

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2015-12-5 22:54:53
回复 13# 其妙

对几何感兴趣,收藏了很多几何帖子来看,就是下面这题,不过看不到maven的解答了
bbs.pep.com.cn/forum.php?mod=viewthread&t … &extra=page%3D20

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-12-5 23:25:55
回复 14# abababa
他居然把解答的帖子删除了

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2015-12-5 23:28:02
回复 15# 其妙

是的,很早就发现他自删了很多回帖

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2015-12-7 14:52:21
此题纯粹解析法也很简单。基本的运算还是需要的吗。呵呵。。。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-3-31 02:32:48
Last edited by hbghlyj at 2023-11-16 11:39:00

近代欧氏几何学 [美]约翰逊 2012年版 第50页Roger A. Johnson - Advanced Euclidean Geometry (2007) p.76
500px-Descartes_Circles.svg.png 500px-Descartes_Circles.svg.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list