Forgot password
 Register account
View 2309|Reply 2

[不等式] 一道不等式

[Copy link]

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2014-1-2 14:24 |Read mode
$x,y,z>0,x+y+z=3 $,请证明:\[  \dfrac{xy}{z+xy}+\dfrac{yz}{x+yz}+\dfrac{zx}{y+zx}\le \dfrac32  \]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-1-2 15:00
SOS就可以了
\begin{align*}
\sum\frac{xy}{z+xy}\leqslant \frac32&\iff\sum\frac z{z+xy}\geqslant \frac32 \\
&\iff \sum\frac{z(x+y+z)}{z(x+y+z)+3xy}\geqslant \frac32 \\
&\iff \sum\left( \frac{z(x+y+z)}{z(x+y+z)+3xy}-\frac12 \right)\geqslant 0 \\
&\iff \sum\frac{(z-x)(z+3y)+(z-y)(z+3x)}{z(x+y+z)+3xy}\geqslant 0 \\
&\iff \sum\left( \frac{(z-x)(z+3y)}{z(x+y+z)+3xy}+\frac{(x-z)(x+3y)}{x(x+y+z)+3yz} \right)\geqslant 0 \\
&\iff \sum\frac{6y^2(x-z)^2}{\bigl(z(x+y+z)+3xy\bigr)\bigl(x(x+y+z)+3yz\bigr)}\geqslant 0.
\end{align*}

写完感觉以前可能写过同样的东西……

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2014-1-2 15:35
谢谢kuing!!!!!!!!!!!!!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:23 GMT+8

Powered by Discuz!

Processed in 0.013185 seconds, 22 queries