Forgot password?
 Register account
View 2523|Reply 1

[函数] 导函数不等式

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-1-3 19:20 |Read mode
转自:sq.k12.com.cn/discuz/thread-694257-1-1.html
我没想错的话答案应该是D
f(2)>2f(1)+6

未命名.GIF
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-1-3 20:52
嗯,当 $x>0$ 时
\[
f'(x)>2x^2+\frac{f(x)}x\iff\frac{f'(x)x-f(x)}{x^2}-2x>0 \iff\left( \frac{f(x)}x-x^2 \right)'>0,\]
从而
\[b-a=-\frac12f(-2)-4-f(1)+1=\frac{f(2)}2-2^2-\left( \frac{f(1)}1-1^2 \right)>0.\]

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit