Forgot password?
 Register account
View 2124|Reply 3

[数列] 多项式的系数求和

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-1-8 07:50 |Read mode
转自:mathchina.com/cgi-bin/topic.cgi?forum=5&t … pic=19212&show=0

计算$\sum_{k=0}^{2n} (-1)^k a_k^2$其中$\sum_{k=0}^{2n} a_k x^k=(1-\sqrt{2}x+x^2)^n$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-1-8 13:49
转自:

计算$\sum_{k=0}^{2n} (-1)^k a_k^2$其中$\sum_{k=0}^{2n} a_k x^k=(1-\sqrt{2}x+x^2)^n$
tommywong 发表于 2014-1-8 07:50
错误: 进入论坛
关于进入论坛的详细原因:
你的论坛组没有权限进入论坛!
您是否需要查看帮助文件?
产生进入论坛错误的可能原因:
密码错误
用户名错误
您不是注册用户

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

 Author| tommywong Posted 2014-1-8 13:56
数学中国“mathchina.com/cgi-bin/leobbs.cgi
没有注册是进不去的,不过也没有需要进去。
如果他们有解法的话我会转过来。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

 Author| tommywong Posted 2017-12-3 20:18
$\displaystyle(1-\sqrt{2}x+x^2)^n=\sum_{k=0}^{2n}a_k x^k$

可證$a_{2n-k}=a_k$

$\displaystyle(1+\sqrt{2}x+x^2)^n=\sum_{k=0}^{2n}(-1)^k a_k x^k$

$\displaystyle(x^4+1)^n=\sum_{k=0}^n C_n^k x^{4k}=\sum_{k=0}^{4n}x^k(\sum_{m=0}^k (-1)^m a_{k-m}a_m)$

$4k=2n\Rightarrow k=\dfrac{n}{2}$

$\displaystyle\sum_{m=0}^{2n}(-1)^m a_m^2=\sum_{m=0}^{2n}(-1)^m a_{2n-m}a_m=
\begin{cases}
C_n^{n/2}~,2n\equiv 0\pmod{4}\\
0~,2n\equiv 2\pmod{4}
\end{cases}$

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit