Forgot password?
 Register account
View 2814|Reply 6

[不等式] 来自某网友问的最大值的最小值

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-1-10 21:36 |Read mode
太多/mg (2317****) 20:38:49
求max{x^2+y^2,xy+z,1/(x^2*y^2*z)^1/3}的最小值其中xyz为正数
希望后面只是打漏逗号吧,因为“xyz为正数”与“x,y,z为正数”是两码事,这里暂且当作是后者来做好了。


\[M=\max \left\{ x^2+y^2,xy+z,\frac1{\sqrt[3]{x^2y^2z}} \right\} ,\]
则由均值不等式有
\[(M+2M)M\geqslant (x^2+y^2+2xy+2z)\frac1{\sqrt[3]{x^2y^2z}}\geqslant \frac{4xy+2z}{\sqrt[3]{x^2y^2z}}=\frac{2(xy+xy+z)}{\sqrt[3]{x^2y^2z}}\geqslant 6,\]
即得
\[ (M+2M)M\geqslant 6\riff M\geqslant \sqrt2,\]
当 $x=y=1/\sqrt[4]2$, $z=1/\sqrt2$ 时 $M=\sqrt2$。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-1-11 12:23
回复 1# kuing
棒极了!
加权算术平均中还带有几何平均!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2014-1-11 13:59
回复 2# 其妙

?我只是用了常规的均值啊

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2014-1-11 14:07
回复 1# kuing
M还具有选择性?理解了M后,后面却是很棒!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2014-1-11 14:11
回复 4# 史嘉

什么叫“选择性”?

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2014-1-11 14:25
回复 5# kuing

“三个”M如此巧妙的搭配,秒!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-1-11 17:49
回复  kuing
M还具有选择性?理解了M后,后面却是很棒!
史嘉 发表于 2014-1-11 14:07
选择性就是加权、权重的意思,该集合里的三个数有的权重为$\dfrac13$,有的权重为$\dfrac23$,权重为$0$,光加权算术平均还不行,还得搭上几何平均

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit