Forgot password?
 Create new account
View 2360|Reply 2

[不等式] 求教一道不等式

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted at 2014-1-12 11:34:27 |Read mode
$a,b,c\ge0,a^2+b^2+c^2=1,$求证: \[ \sqrt{\dfrac{a}{1+bc}}+ \sqrt{\dfrac{b}{1+ca} }+\sqrt{\dfrac{c}{1+ab}} \ge1 \]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-1-12 13:56:55
由 Holder 不等式有
\[\left( \sum\sqrt{\frac a{1+bc}} \right)^2\sum(a^2+a^2bc)\geqslant \left( \sum a \right)^3,\]
因此只要证
\[\left( \sum a \right)^3\geqslant 1+abc\sum a,\]
由 $\left( \sum a \right)^2\geqslant \sum a^2=1\riff\sum a\geqslant 1$ 以及 $\sum ab\leqslant \sum a^2=1$,得到
\[\left( \sum a \right)^3\geqslant \left( \sum a \right)^2=1+2\sum ab\geqslant 1+2\left( \sum ab \right)^2\geqslant 1+\frac13\left( \sum ab \right)^2\geqslant 1+abc\sum a,\]
故得证。

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted at 2014-1-12 14:16:32
K哥V5!!!!!!!谢谢

手机版Mobile version|Leisure Math Forum

2025-4-22 06:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list