Forgot password?
 Create new account
View 1452|Reply 5

SOS Henie归并性定理证明

[Copy link]

16

Threads

36

Posts

293

Credits

Credits
293

Show all posts

╰☆ヾo.海x Posted at 2014-1-14 03:09:15 |Read mode
QQ20140113-4.gif
这个有人称为海涅归并性定理。。 这只是其中一条,怎么证啊? 我只知道跟连续性搭噶的那一条的证明。。

Comment

f:X→Y连续当且仅当 对任意的网S,若S收敛到x,则f(S)收敛到f(x)。当X是C1空间时,网可用序列替换(欧氏空间是C1空间,这样就有Heine定理)。  Posted at 2022-12-17 20:34

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2014-1-14 10:20:10
Last edited by icesheep at 2014-1-14 15:41:00右推左,反证法;
左推右,都用 epsilon-delta 语言写成定义就显然了。

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2022-12-17 18:31:56
Heine definition of limit of a function at infinity using sequences
Suppose $\lim_{x\to+\infty}f(x)=L$. That is, for every $\epsilon>0$ there exists $x_0$ such that $x>x_0$ implies $|f(x)-L|<\epsilon$. Let $x_n\to+\infty$, that is for every $M>0$ exists $n_0\in\Bbb N$ such that $n>n_0$ implies $x_n>M$. I claim that $f(x_n)\to L$. Indeed, let $\epsilon>0$ be given. Then pick $x_0$ such that $x>x_0$ implies $|f(x)-L|<\epsilon$. Then pick $n_0\in\Bbb N$ such that $n>n_0$ implies $x>x_0$. It follows that $|f(x_n)-L|<\epsilon$ for $n>n_0$.

Next suppose $\lim_{n\to\infty}f(x_n)=L$ for all sequences with $x_n\to\infty$.
I claim that $\lim_{x\to+\infty}f(x)=L$.
Indeed, let $\epsilon>0$ be given.
Assume there does not exist $M$ such that $x>M$ implies $|f(x)-L|<\epsilon$. Then we can define a sequence $x_n$ as follows: For given $n\in \Bbb N$ pick $x_n$ arbitrary with $x_n>n$ and $|f(x_n)-L|\ge\epsilon$ (such $x_n$ exists by our assumption applied to $M=n$). Then clearly $x_n\to +\infty$ and hence $|f(x_n)-L|<\epsilon$ for sufficiently large $n$. As this contradicts $|f(x_n)-L|\ge\epsilon$, the initial assumption must be wrong. That is: There does exist some $M$ such that for all $x>M$ we have $|f(x)-L|<\epsilon$.

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2022-12-17 18:58:30

The continuity dream. The limit of a sequence $x_i$ is $x_∞$

Let $ℕ_∞$ be the one-point compactification of the discrete space $ℕ$ of natural numbers. Then a sequence $x_i$ in a space $X$ has a limit $c$ if and only if the (trivially continuous) map $x:ℕ → X$ extends to a continuous map $x̂:ℕ_∞ → X$ with $x̂(∞)=c$.
$$\xymatrix@C=2cm{
\mathbb N \ar@{^{(}->}[d]
&X\ar@{<-}[l]_{(x_i)}\ar@{<-}[ld]^{(x_i;c)}\\
\mathbb N_\infty}$$
Alexandroff extension

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2022-12-17 19:16:54
→ is continuous, is equivalent to $\lim_{i\to\infty} x_i=c$
↓ is continuous function $f$
→ and ↓ are continuous, implies that ↘ is continuous, which is equivalent to $\lim_{i\to\infty} f(x_i)=\ell$
$$\xymatrix@C=2cm{
\mathbb N_\infty
&X\ar@{<-}[l]_{(x_i;c)}\ar@{->}[d]^{f}\\&
Y\ar@{<--}[lu]^{(f(x_i);f(c))}}$$

手机版Mobile version|Leisure Math Forum

2025-4-21 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list