Forgot password?
 Register account
View 3230|Reply 12

[函数] 相隔四分这一个周期 两垂直x轴线 截正弦类

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-1-18 00:34 |Read mode
Last edited by isee 2014-1-18 07:35大家帮看看,怎么解释。脑子转不动了,谢了先。

红色的是所给的标准答案。



g1-sin.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-1-18 15:48
分段函数表示,能解决吗……
这题怎么没人鸟,太容易了?

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-1-18 15:52
各种分类,可以将函数式求出来,当然就是分段函数了,玩下去肯定能解决,但是我就没这心思了……

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-1-18 15:54
回复 3# kuing
鸟KK

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2014-1-18 17:26
回复 2# 乌贼


    太麻烦了,主要是

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-1-18 19:34
回复 5# isee
(1)(2)是很容易排除的:
显然$f(x)=\sin\dfrac{\pi x}{2}$的周期为4,

当$t=\dfrac12$时,$x\in[\dfrac12,\dfrac32]$,根据其图像可得,$M(\dfrac12)=f(1)=1,m(\dfrac12)=f(\dfrac12)=f(\dfrac32)=\dfrac{\sqrt2}{2}$,

于是,$h(\dfrac12)=M(\dfrac12)-m(\dfrac12)=1-\dfrac{\sqrt2}{2}$.

但是,当$t=-\dfrac12$时,$x\in[-\dfrac12,\dfrac12]$,根据其图像可得,$M(-\dfrac12)=f(\dfrac12)=\dfrac{\sqrt2}{2},m(-\dfrac12)=f(-\dfrac12)=-\dfrac{\sqrt2}{2}$,

于是,$h(-\dfrac12)=M(-\dfrac12)-m(-\dfrac12)=\dfrac{\sqrt2}{2}-(-\dfrac{\sqrt2}{2})=\sqrt2$.

故$h(-\dfrac12)\ne h(\dfrac12)$,(1)错误;

(2)的$h(x)$值域里最大值为$1$,但是$h(-\dfrac12)=\sqrt2>1$,故(2) 错误。

很久没练习打公式了 ,还真累。
妙不可言,不明其妙,不着一字,各释其妙!

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-1-18 21:32
回复 6# 其妙
由图像可直接排除,关键就是$3,4$

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-1-18 23:53
回复 7# 乌贼
你一眼就秒杀了!可我却写了这么多,

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-1-19 00:04
回复 8# 其妙
我不懂代数推导

1

Threads

7

Posts

48

Credits

Credits
48

Show all posts

尔维特欧文 Posted 2014-1-19 11:27
用特殊位置考虑 一个周期的分段函数

1

Threads

7

Posts

48

Credits

Credits
48

Show all posts

尔维特欧文 Posted 2014-1-19 11:35
这个看看 用一个周期的分段函数表示出来 验证,3 4正确
QQ截图20140124011442.jpg

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-1-19 15:04
下面证明函数$h(t)=M(t)-m(t)$是周期为2的函数。
首先注意到$f(x)=\sin\dfrac{\pi}{2}x$满足性质:$f(t+2)=-f(t)$,故$f(x)$在$x\in[t+2,t+3]$时的图像和$x\in[t,t+1]$时形状完全一样,且这两段图像成“相反状态”(只可意会不好言传)。

所以,当$x\in[t,t+1]$时,$f(t)\in[m(t),M(t)]$,

当$x\in[t+2,t+3]$时,$f(t)\in[m(t+2),M(t+2)]=[-M(t),-m(t)]$,

当$x\in[t,t+1]$时,$h(t)=M(t)-m(t)$,

当$x\in[t+2,t+3]$时,$h(t+2)=M(t+2)-m(t+2)=-m(t)-[-M(t)]=h(t)$,故函数$h(t)=M(t)-m(t)$是周期为2。

所以(3)正确。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2014-1-19 20:45
感谢楼上诸位指教!谢谢,辛苦了!

Mobile version|Discuz Math Forum

2025-6-6 21:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit