Forgot password?
 Register account
View 2230|Reply 8

[数列] 数列解答题

[Copy link]

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

史嘉 Posted 2014-1-22 07:41 |Read mode
Last edited by 史嘉 2014-1-22 21:24已知$a_1=1,a_2=2,a_3=4,a_{2n}=a_{2n-1}+2a_{2n-2}$,求$a_{n}$
答案是$a_{n}=2^{n-1}$

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2014-1-22 08:55
已知$a_1=1,a_2=2,a_{2n}=a_{2n-1}+2a_{2n-2}$,求$a_{2n}$
史嘉 发表于 2014-1-22 07:41
请问 a3=?
I am majia of kuing

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-1-22 09:08
回复 2# 爪机专用


除了$a_1$,其他奇数项都处于未定义状态

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-1-22 12:05
估计是原题中的某一步,原题是分奇数、偶数的,楼主只拿出分了偶数的那一团式子 。
所以建议楼主提问的时候,要把题目写全,切忌自己提取出题目的一部分。最好还是扫描版的,例如昨晚的那个导数题。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-1-22 12:33
回复 4# 其妙
看看是不是这个题:
数列$\{ {x_n}\} $定义如下: ${x_1} = 2$,${x_2} = 3$,$\left\{ \begin{array}{l}
{x_{2m + 1}} = {x_{2m}} + {x_{2m - 1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (m \geqslant 1)\\
{x_{2m}} = {x_{2m - 1}} + 2{x_{2m - 2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (m \geqslant 2)
\end{array} \right.$,试求数列$\{ {x_n}\} $的通项公式.

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2014-1-22 18:01
回复 4# 其妙

早晨时间紧,原题带根号等很复杂,所以只输转换的部分。
不好意思,sorry!
原题:(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
−1恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.
jyeoo.com/math2/ques/detail/ed890127-5611-418e-9cee-eb738e7f59b3

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2014-1-22 21:24
1楼是我做此题时转换到此,请诸位看看能否沿此思路做出来。
如下:
已知$a_1=1,a_2=2,a_3=4,a_{2n}=a_{2n-1}+2a_{2n-2}$,求$a_{n}$
答案是$a_{n}=2^{n-1}$

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-1-22 21:34
1楼是我做此题时转换到此,请诸位看看能否沿此思路做出来。
如下:
已知$a_1=1,a_2=2,a_3=4,a_{2n}=a_{2n-1}+2a_{2n-2}$,求$a_{n}$
答案是$a_{n}=2^{n-1}$
史嘉 发表于 2014-1-22 21:24
请问 $a_5=?$

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2014-1-22 21:38
回复 8# kuing

我是令6楼题中m=n,先消除$a_{2n}$,再相减消除$S_{2n}$等得到的,
而$a_{1}$至$a_{5}$可递推出。
$a_{1}=1,a_{2}=2,a_{,3}=4,a_{4}=8.。。。。。$

Mobile version|Discuz Math Forum

2025-6-6 23:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit