Forgot password
 Register account
View 2463|Reply 7

[数列] 几个数列的类似递推公式

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-1-25 12:24 |Read mode
$a_1=2,a_n=\frac{a_{n-1}+1}{a_{n-1}-1}$
$a_1=2,a_n=\frac{a_{n-1}-1}{a_{n-1}+1}$
$a_1=2,a_n=\frac{1+a_{n-1}}{1-a_{n-1}}$
$a_1=2,a_n=\frac{1-a_{n-1}}{1+a_{n-1}}$

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2014-1-25 12:31
回复 1# 青青子衿
$a_1=2,a_n=\frac{1+a_{n-1}}{1-a_{n-1}}$
$\Rightarrow$$a_n=\tan{[\frac{(n-1)\pi}{4}+\arctan2]}$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-1-25 15:03
\begin{align*}
\tan(x-y)&=\frac{\tan x-\tan y}{1+\tan x\tan y},\\
\cot(x-y)&=\frac{1+\cot x\cot y}{\cot y-\cot x},
\end{align*}
全部解决。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-1-25 15:28
根据判别法,不动点方程的根有的是虚数吧?所以是周期数列,有的数列虽然有根,但显然为周期为2。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-1-25 15:54
根据判别法,不动点方程的根有的是虚数吧?所以是周期数列,有的数列虽然有根,但显然为周期为2。 ...
其妙 发表于 2014-1-25 15:28
既然知道判别法,你应该知道不动点方程的根是实是虚与是否有周期并没有必然联系啊……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-1-25 15:59
回复 5# kuing
,但是出题的人大多数出周期数列,

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2014-9-8 14:13
回复 3# kuing
\begin{align*}
\tan(x-y)&=\frac{\tan x-\tan y}{1+\tan x\tan y},\\
\cot(x-y)&=\frac{1+\cot x\cot y}{\cot y-\cot x},
\end{align*} ...
kuing 发表于 2014-1-25 15:03
谢谢!
搜狗截图20140908140237.png 搜狗截图20140908140149.png 搜狗截图20140908140015.png

0

Threads

153

Posts

2

Reputation

Show all posts

Infinity posted 2014-9-14 12:43
回复 5# kuing


    当然有关系。不动点为复数,若幅角与$\pi$的比值是有理数,那么必然是周期数列;否则不是,但会非常稠密地遍历各个点。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:24 GMT+8

Powered by Discuz!

Processed in 0.015450 seconds, 25 queries