Forgot password
 Register account
View 2644|Reply 6

[几何] 来自人教群的立几小题

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-1-30 17:30 |Read mode
学生-86鱼(1608******)  17:07:28
QQ截图20140130172511.jpg
由于侧棱相等故是正三棱锥,于是易见 $\vv{OA}$, $\vv{OB}$, $\vv{OC}$ 两两夹角相同,设为 $\theta$,又设球半径为 $R$,则对已知等式两边平方有
\[\bigl(\vv{OA}+\vv{OB}+\vv{OC}\bigr)^2=\vv{VO}^2 \riff 3R^2+6R^2\cos\theta=R^2,\]

\[\bigl(\vv{OA}-\vv{OB}\bigr)^2=\vv{AB}^2=4^2\riff 2R^2-2R^2\cos\theta=4^2,\]
解得
\[\cos\theta=-\frac13,R=\sqrt6,\]
所以球 $O$ 的体积为
\[\frac43\pi R^3=8\pi\sqrt6.\]

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-1-30 17:40
话说,这样做是不是秒了?
设此四面体的重心为 $G$,则
\[\vv{OA}+\vv{OB}+\vv{OC}=\vv{VO} \iff \vv{OG}+\vv{GA}+\vv{OG}+\vv{GB}+\vv{OG}+\vv{GC}+\vv{OG}+\vv{GV}=\vv0 \iff \vv{OG}=\vv0,\]
即此四面体的重心与外心重合,因此为正四面体??(有没有这样的定理?)

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2014-1-31 07:22
回复 2# kuing

反正在"底面是正三角形,侧棱长又都相等"的条件下应该是成立的.

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-1-31 09:04
仅重心与外心重合而没有别的条件的话,的确有反例,也就是说2楼没有那个定理。
重心与外心重合能推出对棱相等,所以反例可以在长方体里构造。
QQ截图20140131093641.gif
I am majia of kuing

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-1-31 09:38
也就是说题目中前面的条件不完全多余,但也有多余,比如说侧棱相等可以去掉。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-1-31 09:39
反过来,对棱相等的四面体的外心与重心是不是也一定重合?看上去是……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-3 14:11
已知那个向量的条件得到的感觉本来是重心,恰巧又是正三棱锥,那就只有四星合一了(外内重垂心)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:49 GMT+8

Powered by Discuz!

Processed in 0.013487 seconds, 25 queries