Forgot password?
 Create new account
View 2483|Reply 6

[几何] 来自人教群的立几小题

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-1-30 17:30:01 |Read mode
学生-86鱼(1608******)  17:07:28
QQ截图20140130172511.jpg

由于侧棱相等故是正三棱锥,于是易见 $\vv{OA}$, $\vv{OB}$, $\vv{OC}$ 两两夹角相同,设为 $\theta$,又设球半径为 $R$,则对已知等式两边平方有
\[\bigl(\vv{OA}+\vv{OB}+\vv{OC}\bigr)^2=\vv{VO}^2 \riff 3R^2+6R^2\cos\theta=R^2,\]

\[\bigl(\vv{OA}-\vv{OB}\bigr)^2=\vv{AB}^2=4^2\riff 2R^2-2R^2\cos\theta=4^2,\]
解得
\[\cos\theta=-\frac13,R=\sqrt6,\]
所以球 $O$ 的体积为
\[\frac43\pi R^3=8\pi\sqrt6.\]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2014-1-30 17:40:51
话说,这样做是不是秒了?
设此四面体的重心为 $G$,则
\[\vv{OA}+\vv{OB}+\vv{OC}=\vv{VO} \iff \vv{OG}+\vv{GA}+\vv{OG}+\vv{GB}+\vv{OG}+\vv{GC}+\vv{OG}+\vv{GV}=\vv0 \iff \vv{OG}=\vv0,\]
即此四面体的重心与外心重合,因此为正四面体??(有没有这样的定理?)

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2014-1-31 07:22:49
回复 2# kuing

反正在"底面是正三角形,侧棱长又都相等"的条件下应该是成立的.

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-1-31 09:04:20
仅重心与外心重合而没有别的条件的话,的确有反例,也就是说2楼没有那个定理。
重心与外心重合能推出对棱相等,所以反例可以在长方体里构造。
QQ截图20140131093641.gif
I am majia of kuing

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2014-1-31 09:38:21
也就是说题目中前面的条件不完全多余,但也有多余,比如说侧棱相等可以去掉。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2014-1-31 09:39:26
反过来,对棱相等的四面体的外心与重心是不是也一定重合?看上去是……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-3 14:11:33
已知那个向量的条件得到的感觉本来是重心,恰巧又是正三棱锥,那就只有四星合一了(外内重垂心)

手机版Mobile version|Leisure Math Forum

2025-4-21 23:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list