Forgot password
 Register account
View 2169|Reply 2

[不等式] 名校模拟不等式题

[Copy link]
青青子衿 posted 2014-1-30 19:59 |Read mode
已知函数:$f(x)=2^{n-1}(x^n+a^n)-(x+a)^n$$,(x\in[0,+\infty],n\in N^*)$
Ⅰ.求函数$f(x)$的最小值。
Ⅱ.求$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}的最大值$
Ⅲ.定理:
若$a_1,a_2,a_3,……,a_k>0$,则有\[\frac{a_1^n+a_2^n+a_3^n+……+a_k^n}{k}\ge (\frac{a_1+a_2+a_3+……+a_k}{k})^n\]
成立。请构造一个函数证明:
\[\frac{a_1^n+a_2^n+a_3^n+……+a_k^n+a_{k+1}^n}{k+1}\ge (\frac{a_1+a_2+a_3+……+a_k+a_{k+1}}{k+1})^n\]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2014-1-31 00:49
看起来像湖北的题

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-3 18:51
Ⅰ.  由权方和得,$f(x)=2^{n-1}(x^n+a^n)-(x+a)^n\geqslant 2^{n-1}\dfrac{(x+a)^n}{(1+1)^{n-1}}-(x+a)^n=0$,

    当然题目的本意是求导和求极小值点吧?
Ⅱ.  令$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}=u+v$,则$u^3+v^3=p+q$,由(I)的结论知,$p+q=u^3+v^3\geqslant \dfrac{(u+v)^3}{2^2}$,

    故$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}=u+v\leqslant\sqrt[3]{4(p+q)}$,

Ⅲ.  想必是用数学归纳法证幂平均不等式的一个推论吧?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:53 GMT+8

Powered by Discuz!

Processed in 0.010230 seconds, 22 queries