Forgot password?
 Create new account
View 2048|Reply 2

[不等式] 名校模拟不等式题

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-1-30 19:59:24 |Read mode
已知函数:$f(x)=2^{n-1}(x^n+a^n)-(x+a)^n$$,(x\in[0,+\infty],n\in N^*)$
Ⅰ.求函数$f(x)$的最小值。
Ⅱ.求$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}的最大值$
Ⅲ.定理:
若$a_1,a_2,a_3,……,a_k>0$,则有\[\frac{a_1^n+a_2^n+a_3^n+……+a_k^n}{k}\ge (\frac{a_1+a_2+a_3+……+a_k}{k})^n\]
成立。请构造一个函数证明:
\[\frac{a_1^n+a_2^n+a_3^n+……+a_k^n+a_{k+1}^n}{k+1}\ge (\frac{a_1+a_2+a_3+……+a_k+a_{k+1}}{k+1})^n\]

66

Threads

414

Posts

3563

Credits

Credits
3563

Show all posts

Tesla35 Posted at 2014-1-31 00:49:18
看起来像湖北的题

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-3 18:51:20
Ⅰ.  由权方和得,$f(x)=2^{n-1}(x^n+a^n)-(x+a)^n\geqslant 2^{n-1}\dfrac{(x+a)^n}{(1+1)^{n-1}}-(x+a)^n=0$,

    当然题目的本意是求导和求极小值点吧?
Ⅱ.  令$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}=u+v$,则$u^3+v^3=p+q$,由(I)的结论知,$p+q=u^3+v^3\geqslant \dfrac{(u+v)^3}{2^2}$,

    故$g(x)=\sqrt[3]{x+p}+\sqrt[3]{q-x}=u+v\leqslant\sqrt[3]{4(p+q)}$,

Ⅲ.  想必是用数学归纳法证幂平均不等式的一个推论吧?

手机版Mobile version|Leisure Math Forum

2025-4-22 06:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list