Forgot password?
 Create new account
View 2110|Reply 13

[数列] 一道选择,做出了E

[Copy link]

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

君无戏言 Posted at 2014-1-31 13:15:15 |Read mode
Last edited by 君无戏言 at 2014-1-31 13:25:00已知 $\{a_n\}$ 是等比数列,公比为 q
\[b_n=a_{m(n-1)+1}+a_{m(n-1)+2}+\cdots+a_{m(n-1)+n} \]
\[c_n=a_{m(n-1)+1}·a_{m(n-1)+2}·\cdots·a_{m(n-1)+n}\]
则:
A.$\{b_n\}为等差数列 d=q^m$
B.$\{b_n\} 为等比数列Q=q^{2m}$
C.$\{c_n\} 为等比数列Q=q^{m^2}$
D.$\{c_n\} 为等比数列Q=q^{m^n}$

E.$\{c_n\}为等比数列Q=q^{mn}$ 是我做出来的

不知道是不是对??或者哪里出了问题

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-1-31 22:02:59
都是非等差也非等比

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-1-31 22:22:24
恳求指导

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-1-31 22:53:37
一滴雨露可以折射整个世界,一件小事便能检验人的品格。身价与人品等值,才是真正的富有者。(这回帖是为了关注新回复、、刚才手抖就给把回复提示退订了= =)

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-1-31 22:54:49
用 a1 和 q 表示 bn 和 cn 就知道了

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-2-1 23:17:54
还是那结果- -

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-1 23:26:43
$a_n=a_1q^{n-1}$
\[c_n=a_1q^{m(n-1)}\cdot a_1q^{m(n-1)+1}\cdots a_1q^{m(n-1)+n-1}
=a_1^nq^{mn(n-1)+\frac{n(n-1)}2}\]

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-2-1 23:34:57
\[c_{n-1}=a_{m(n-2)+1}·a_{m(n-2)+2}·\cdots·a_{m(n-2)+n}\]
这么走对不?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-1 23:35:40

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-2-1 23:39:48
回复 9# kuing


    哪里走岔了捏??

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-1 23:42:35
括号里的 n 变成 n-1,后面的 n 怎么不变?

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-2-1 23:45:27
回复 11# kuing


    呃、嗳玛~~~~~果然是非智低配ing

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-1 23:55:06
你直接看7#的式子就能判断了啊。
再说,如果是等比的话,公比怎么会含 n ?所以原题的答案 D 以及你的答案都不可能正确,故此说这题实在是…………
建议去核对原题

2

Threads

14

Posts

91

Credits

Credits
91

Show all posts

 Author| 君无戏言 Posted at 2014-2-2 22:14:57
回复 13# kuing


    的确、确是。当时也说是错题了,,,,,怎么能看到n还白目的说“等比”。叫我笨笨的人果然是慧眼识猪

手机版Mobile version|Leisure Math Forum

2025-4-22 06:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list