Forgot password?
 Create new account
View 1343|Reply 3

由数列的周期性想到的函数周期性

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-2-2 18:17:58 |Read mode
$a_n=\frac{b}{a_{n+1}a_{n-1}}$的周期为3
\[f(n)=\frac{b}{f(n+m)f(n-m)}\]
的周期为$3m$
那\[f(n)=\frac{b}{f(n+m)f(n-m)f(n-m)}\]??

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-3 14:02:09

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2014-2-3 18:42:01
$a_n=\frac{b}{a_{n+1}a_{n-1}}$的周期为3
\[f(n)=\frac{b}{f(n+m)f(n-m)}\]
的周期为$3m$
青青子衿 发表于 2014-2-2 18:17

\[f(n)=\frac{b}{f(n+m)f(n-m)}\]
\[f(n+m)=\frac{b}{f(n+2m)f(n)}\]
\[f(n+m)=\frac{b}{f(n+2m)\frac{b}{f(n+m)f(n-m)}}=\frac{f(n+m)f(n-m)}{f(n+2m)}\]
\[f(n+2m)=f(n-m)\]\[f(n+3m)=f(n)\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-3 18:48:07
因为$b=f(n-m)f(n)f(n+m)$

故$b=f(n)f(n+m)f(n+2m)=f(n+m)f(n+2m)f(n+3m)$

所以,$f(n+3m)=f(n)$

手机版Mobile version|Leisure Math Forum

2025-4-22 03:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list