Forgot password?
 Create new account
View 1312|Reply 5

一道南开十点半试题求助!

[Copy link]

2

Threads

15

Posts

88

Credits

Credits
88

Show all posts

yumath Posted at 2014-2-2 18:43:26 |Read mode
有没有什么好的解法,除了调整法= =

2013试点班.jpg

是第15题,当然,有兴趣可以都做一下,看看有什么好的解法!O(∩_∩)O谢谢

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-2 22:06:30

\[S=\left|\frac{a_2+a_3+\cdots+a_n}n-a_1\right|+\left|\frac{a_3+a_4+\cdots+a_1}n-a_2\right|+\cdots+\left|\frac{a_1+a_2+\cdots+a_{n-1}}n-a_n\right|,\]
任意选取一个变量 $a_i$,将其余 $n-1$ 个变量固定,此时 $S$ 关于 $a_i$ 的函数图象为线段或者折线,由于绝对值前均为正,故折线必然是“开口向上”的,由此可见,要求最大值只要验证各 $a_i=\pm1$ 的情况。
不妨设有 $k$ 个 $1$,有 $n-k$ 个 $-1$,则
\begin{align*}
S&=k\left|\frac{k-1-(n-k)}n-1\right|+(n-k)\left|\frac{k-(n-k-1)}n+1\right|\\
&=\frac{k(2n-2k+1)}n+\frac{(n-k)(2k+1)}n\\
&=\frac{4k(n-k)}n+1,
\end{align*}
故此当 $k=[n/2]$ 时 $S$ 取最大值为
\[\frac4n\left[\frac n2\right]\left(n-\left[\frac n2\right]\right)+1.\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-3 14:00:22
南开十点半?
重庆还是天津南开?

2

Threads

15

Posts

88

Credits

Credits
88

Show all posts

 Author| yumath Posted at 2014-2-14 11:35:38
是南开大学数学试点班....

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-14 15:00:35
原来“十点半”=“试点班”……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-15 16:34:09
原来“十点半”=“试点班”……
kuing 发表于 2014-2-14 15:00

手机版Mobile version|Leisure Math Forum

2025-4-22 03:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list