Forgot password?
 Register account
View 4120|Reply 14

[不等式] 转,一个不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-2-7 12:05 |Read mode
Last edited by realnumber 2014-2-7 12:14 QQ图片20140203091838.jpg
其中ω为锐角,好象是石世昌老师的。
不会~~。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2014-2-8 11:23
顶下,
$x\in [0,\frac{\pi}{5}],ω-\frac{4}{3}x\le0$,代入所证式子,可得成立.
以下只是几何画板图象看看似乎成立
$[\frac{\pi}{5},\frac{\pi}{3}],ω\le -\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3}$,证明不会.

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-2-8 12:44
这么丑的式子

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2014-2-8 14:13
不知有何背景??
I am majia of kuing

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-2-8 15:39
他还有个更丑的不等式,据说是浙江省教育厅教研室石世昌副主任招收徒弟的题目,

blog图片博客.jpg
妙不可言,不明其妙,不着一字,各释其妙!

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-2-8 16:08
回复 5# 其妙
你是包打听

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-2-8 16:14
回复  其妙
你是包打听
乌贼 发表于 2014-2-8 16:08
嘻嘻,那你包证明,怎么样?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2014-2-16 16:39
Last edited by realnumber 2014-2-17 20:08证得很难看,好歹算是完成了.
1.当$x\in [0,\frac{\pi}{5}]$时,可以证明$w\le \frac{4}{3}x$如下
记$f(x)=w-\frac{4}{3}x,f(0)=0,f'(x)=w'-\frac{4}{3}$,
以下证明$f'(x)\le0  \Leftrightarrow  \frac{2\cos{2x}+2\cos{x}}{3\cos{w}}\le \frac{4}{3}$
$\Leftrightarrow  {(\cos{2x}+\cos{x})}^2\le 4(1-{(\frac{\sin{2x}+2\sin{x}}{3})}^2)$
$\Leftrightarrow 32\cos^4{x}+28\cos^3{x}-27\cos^2{x}-10\cos{x}\le 31$,显然有$0\le \cos{x} \le 1,32+28-27-10<31$成立.
而$(\pi-2x+w)(x+w)^2\le (\pi-2x+\frac{4}{3}x)(x+\frac{4}{3}x)^2\le 8x^2(\pi-2x)$
$\Leftrightarrow 334x \le 69\pi$,对于$x\in [0,\frac{\pi}{5}]$成立.
2.当$x\in [\frac{\pi}{5},\frac{\pi}{3}]$时,
按如下处理$w\le g(x)=-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3}$----(1)
                 $(\pi-2x+g(x))(x+g(x))^2\le 8x^2(\pi-2x)$------(2)
       若(1)(2)都成立,则1楼要证明的不等式成立.
先证明(2),记$h(x)=8x^2(\pi-2x)-(\pi-2x+g(x))(x+g(x))^2$
令$\frac{\pi}{3}-x=\pi t,x\in [\frac{\pi}{5},\frac{\pi}{3}],t\in [0,\frac{2}{15}]$
\[\frac{8\times 27h(x)}{{\pi}^3}=64(1-3t)^2(6t+1)-(4+12t-27t^2)(4-6t-27t^2)^2=19683t^6-11664t^4+3024t^3\]
(注:多项式化简来自这个地址zh.numberempire.com/simplifyexpression.php   ,又本来打算碰到个缺常数项的6次,继续用导数.而化简结果如此出乎意料.)
如此只需要证明$19683t^3-11664t+3024\ge 0,t\in [0,\frac{2}{15}]$,显然有$3024\ge 11664\times \frac{2}{15}$,那么不等式(2)成立.
要证明不等式(1),
只需要证明$f(x)=\sin{(-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3})}-\sin{w}\ge 0,x\in [\frac{\pi}{5},\frac{\pi}{3}]$
而$f(\frac{\pi}{3})=0$,
$f'(x)=\cos{(-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3})}(-\frac{9}{\pi}(x-\frac{\pi}{3}))-\frac{2\cos{2x}+2\cos{x}}{3}\le 0$
此式对$x\in [\frac{\pi}{4},\frac{\pi}{3}]$成立,如下
令$\frac{\pi}{3}-x=t,t\in [0,\frac{\pi}{12}]$,
$\cos{2x}+\cos{x}=(1+2\cos{t})(\sin^2{\frac{t}{2}}+\frac{\sqrt{3}}{2}\sin{t})\ge \frac{\sqrt{3}}{2}(1+2\cos{t})\sin{t}\ge \frac{\sqrt{3}}{2}(1+2\cos{\frac{\pi}{12}})\sin{t}$
$x\in [\frac{\pi}{4},\frac{\pi}{3}]$时,$-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3}\ge \frac{\pi}{3}-\frac{\pi}{32}$
要证明$f'(x)\le 0$,只需要证明$\cos{(\frac{\pi}{3}-\frac{\pi}{32})}\frac{9}{\pi}t\le \frac{2}{3}\frac{\sqrt{3}}{2}(1+2\cos{\frac{\pi}{12}})\sin{t}$
由函数图象,只需要在$t=\frac{\pi}{12}$时成立即可,经计算器检验成立.
当$x\in [\frac{\pi}{5},\frac{\pi}{4}]$,
$f''(x)=-\frac{9}{\pi}\cos{(-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3})}-\frac{81}{{\pi}^2}(x-\frac{\pi}{3})^2\sin{(-\frac{9}{2\pi}(x-\frac{\pi}{3})^2+\frac{\pi}{3})}+\frac{4\sin{2x}+2\sin{x}}{3}$
此时$f''(x)\le-\frac{9}{\pi}\cos{(-\frac{9}{2\pi}(\frac{\pi}{4}-\frac{\pi}{3})^2+\frac{\pi}{3})}-\frac{81}{{\pi}^2}(\frac{\pi}{4}-\frac{\pi}{3})^2\sin{(-\frac{9}{2\pi}(\frac{\pi}{5}-\frac{\pi}{3})^2+\frac{\pi}{3})}+\frac{4\sin{2\frac{\pi}{4}}+2\sin{\frac{\pi}{4}}}{3}=-0.2658\le 0$
即$y=f(x),x\in [\frac{\pi}{5},\frac{\pi}{4}]$为上凸函数,又$f(\frac{\pi}{5})\ge 0,f(\frac{\pi}{4})\ge 0$,所以有$f(x)\ge0$.
至此1楼不等式成立. 无敌分类讨论暴力流~~~

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-2-17 20:09
回复 8# realnumber

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2014-2-17 20:18
回复 9# kuing

这个,这个,最后名字是开玩笑啦。区间分割得够小总有办法,如果是严格不等式的话.

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2014-2-27 08:53
浙江石世昌(49------9)  08:49:22
QQ图片20140227085051-----=.jpg
   这个是我的本意
   那是磨光后的表达式.
(----转石老师的话.)

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-2-27 18:24
real牛笔!
还剩下5楼的那个式子了:
他还有个更丑的不等式,据说是浙江省教育厅教研室石世昌副主任招收徒弟的题目,

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-2-27 18:27
回复 11# realnumber

原来如此,很美

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2014-2-27 19:33
回复 12# 其妙

不碰,~~~留给高手~~
8楼已经经过石老师检查.我不清楚数据有没检验过~~~

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2017-1-7 23:09
无敌分类讨论暴力流~~~,再不会有兴致这么做了吧

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit