Forgot password
 Register account
View 2597|Reply 5

[不等式] 来自人教群的简单n元不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-2-7 21:36 |Read mode
学生-caijinzhi(1349******) 12:14:38
大家好 我想问道题
已知Σxi=1,xi>0
求证
QQ图片20140207213340.jpg
(X x不分大小写)
各位老师同学 爱好者 拜托了!
我的思路:在加一个(i<j)Σxixj把最左边凑成完全平方
\begin{align*}
n\sum_{i=1}^nx_i^2-\sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j}\leqslant1&\iff n\sum_{i=1}^nx_i^2-\left( \sum_{i=1}^nx_i \right)^2\leqslant \sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j} \\
&\iff\sum_{i<j}(x_i-x_j)^2\leqslant\sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j},
\end{align*}
因为 $x_i+x_j<1$,故显然成立。

2

Threads

57

Posts

0

Reputation

Show all posts

caijinzhi posted 2014-2-7 22:16
Kuing大哥就是厉害!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2014-2-8 12:56
Kuing大哥就是厉害!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-8 15:40
Kuing小弟就是厉害!

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-2-8 15:46
你们两个水货……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-8 15:51
回复 5# kuing
,的确那个恒等变形用的好啊!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:18 GMT+8

Powered by Discuz!

Processed in 0.013746 seconds, 25 queries