Forgot password?
 Create new account
View 2449|Reply 5

[不等式] 来自人教群的简单n元不等式

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-7 21:36:49 |Read mode
学生-caijinzhi(1349******) 12:14:38
大家好 我想问道题
已知Σxi=1,xi>0
求证
QQ图片20140207213340.jpg
(X x不分大小写)
各位老师同学 爱好者 拜托了!
我的思路:在加一个(i<j)Σxixj把最左边凑成完全平方

\begin{align*}
n\sum_{i=1}^nx_i^2-\sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j}\leqslant1&\iff n\sum_{i=1}^nx_i^2-\left( \sum_{i=1}^nx_i \right)^2\leqslant \sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j} \\
&\iff\sum_{i<j}(x_i-x_j)^2\leqslant\sum_{i<j}\frac{(x_i-x_j)^2}{x_i+x_j},
\end{align*}
因为 $x_i+x_j<1$,故显然成立。

3

Threads

59

Posts

403

Credits

Credits
403

Show all posts

caijinzhi Posted at 2014-2-7 22:16:23
Kuing大哥就是厉害!

66

Threads

414

Posts

3563

Credits

Credits
3563

Show all posts

Tesla35 Posted at 2014-2-8 12:56:04
Kuing大哥就是厉害!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-8 15:40:24
Kuing小弟就是厉害!

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2014-2-8 15:46:34
你们两个水货……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-8 15:51:58
回复 5# kuing
,的确那个恒等变形用的好啊!

手机版Mobile version|Leisure Math Forum

2025-4-22 00:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list