Forgot password?
 Create new account
View 2389|Reply 9

[函数] 解三角函数方程

[Copy link]

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

史嘉 Posted at 2014-2-9 18:01:48 |Read mode
Last edited by 史嘉 at 2014-2-10 12:36:00\[\frac{1-\abs{\cos x}}{1+\abs{\cos x}}=\sin x\]
333.jpg

$\sin^2x=\sin x\cdot(1+\abs{\cos x})^2$
$\sin x[\sin x-(1+\abs{\cos x})^2]=0$
444.jpg
第二个因式为零,只有观察吗?

讨论如何?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-9 18:46:23
回复 1# 史嘉
笨方法,分$\cos x\geqslant0$和$\cos x<0$讨论,去分母分解因式,利用有界性,可得
$\sin x=0,\cos x=\pm1$或$\sin x=1,\cos x=0$,故$x=k\pi$或$x=\dfrac{\pi}2+2k\pi,k\in Z$

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-2-9 18:48:35
回复 1# 史嘉
写代码吧
I am majia of kuing

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2014-2-9 21:32:56
回复 3# 爪机专用
呵呵,绝对值,还分式的,代码要弄半天,爪机了又,哈哈,其妙老师给了方法。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-9 22:10:11
回复 4# 史嘉
可以在mathtype里打出公式,然后复制代码的,

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-10 00:48:04
代码建议手打,软件输出可能比较zao,只有比较多内容而且难打时才考虑软件转换。

1楼的公式其实很容易输入了,我已编辑了1楼,楼主可以编辑看看怎么输入。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-10 01:27:58
第二个因式也直接展开就行了
\begin{gather*}
\sin x-(1+\abs{\cos x})^2=0,\\
\sin x-1-\cos^2x-2\abs{\cos x}=0,\\
\sin x-2+\sin^2x-2\abs{\cos x}=0,\\
(\sin x+2)(\sin x-1)-2\abs{\cos x}=0,
\end{gather*}
显然 $(\sin x+2)(\sin x-1)-2\abs{\cos x}\leqslant0$ 恒成立,等号成立当且仅当 $\sin x=1$ 且 $\cos x=0$,……

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-2-10 01:39:09
回复 7# kuing
...........
还展开啥啊........
\[(1+\abs{\cos(x)})^2\ge 1\]不是显然的么.....

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-10 01:45:10
回复 8# 战巡
彻底傻B了我……

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2014-2-10 12:39:03
回复 6# kuing

谢谢,学习了。
有时需要翻来覆去调整多次,还是不熟,所以图片了。

手机版Mobile version|Leisure Math Forum

2025-4-21 23:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list