Forgot password?
 Create new account
View 2494|Reply 0

[函数] 来自人教论坛的……太简单懒得想标题

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-16 13:16:54 |Read mode
链接:bbs.pep.com.cn/forum.php?mod=viewthread&tid=2878322
发贴ID:ytxiehua2008
求证:$\forall x\in\mbb R^+$, $\displaystyle
\frac{1-x^2-(x^2+x)\ln x}{e^x}<\frac43$。

原不等式等价于
\[(x+1)(1-x-x\ln x)<\frac43e^x,\]
由 $e^x\geqslant x+1$ 可知只要证
\[x+x\ln x>-\frac13,\]
令 $f(x)=x+x\ln x$,则
\[f'(x)=2+\ln x \riff f(x)_{\min}=f(e^{-2})=-e^{-2}>-\frac13,\]
得证。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list