|
Last edited by hbghlyj 2025-5-10 18:42已知 $A, B, C$ 为锐角 $\triangle A B C$ 的三个内角,且 $\sin A=A \sin B$ ,则下列结论正确的是
A.$A>C$
B.$A<C$
C.$B>C$
D.$B<C$
\begin{align*}
\frac{\sin C}{\sin B}-1&=\frac{\sin (A+B)}{\sin B}-1 \\
& =\frac{\sin A\sqrt{1-\sin^2B}+\cos A\sin B}{\sin B}-1 \\
& =\sqrt{\left( \frac{\sin A}{\sin B} \right)^2-\sin^2A}+\cos A-1 \\
& =\sqrt{A^2-\sin^2A}+\cos A-1 \\
& =\frac{A^2-\sin^2A-(\cos A-1)^2}{\sqrt{A^2-\sin^2A}+1-\cos A} \\
& =\frac{A^2-2+2\cos A}{\sqrt{A^2-\sin^2A}+1-\cos A} \\
& =\frac{A^2-4\sin^2\frac A2}{\sqrt{A^2-\sin^2A}+1-\cos A} \\
& =\frac{2\left( A+2\sin \frac A2 \right)\left( \frac A2-\sin \frac A2 \right)}{\sqrt{A^2-\sin^2A}+1-\cos A} \\
& >0,
\end{align*}
故 $\sin C>\sin B$,即 $C>B$。 |
|