Forgot password?
 Register account
View 2635|Reply 12

[函数] 一道与充要条件有关的二次函数范围题

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2014-2-17 18:56 |Read mode
已知$a>0$,函数$f(x)=ax-bx^2$
(1) 当$b>1$时,证明:对任意满足$0\leq x\leq 1$的$x$,$\left|f(x)\right|\leq 1$ 的充要条件是$b-1\leq a\leq 2\sqrt{b}$.
(2) 当$0<b\leq 1$时, 讨论:对任意满足$0\leq x \leq 1$的$x$,$\left|f(x)\right|\leq 1$ 的充要条件.
贴一个解答(改变于资料上的标答),觉得不是很顺畅。

两个圈的地方不好想啊

两个圈的地方不好想啊

有没有好的解答啊?
另外想问下此题出处.

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2014-2-18 00:01
吴剑老师给出了解答,按他的思路书写如下
当$b>1$时,
$$\left|f(x)\right|\leq 1 \Leftrightarrow -1\leq ax-bx^2\leq 1 $$
$$\Leftrightarrow bx-\frac{1}{x}\leq  a\leq \frac{1}{x}+bx\quad(0\leq x\leq 1)$$
$$\Leftrightarrow \left(bx-\frac{1}{x}\right)_\min\leq  a\leq \left(\frac{1}{x}+bx\right)_\max$$
$$\Leftrightarrow b-1\leq a\leq 2\sqrt{b}$$
当$b\leq 1$时,
$$\left|f(x)\right|\leq 1 \Leftrightarrow -1\leq ax-bx^2\leq 1 $$
$$\Leftrightarrow bx-\frac{1}{x}\leq  a\leq \frac{1}{x}+bx\quad(0\leq x\leq 1)$$
$$\Leftrightarrow \left(bx-\frac{1}{x}\right)_\min\leq  a\leq \left(\frac{1}{x}+bx\right)_\max$$
$$\Leftrightarrow b-1\leq a\leq 2\sqrt{b}$$
而$b\leq 1,a>0$ 所以 $0<a\leq 1+b$

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-2-18 00:16
Last edited by 乌贼 2014-10-4 23:44回复 2# 郝酒
这个可以\[a\leqslant f(x)\iff a\leqslant f(x)_{\max}\]
这个行吗?\[f(x)\leqslant a\iff f(x)_{\min}\leqslant a\]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-2-18 00:26
回复 3# 乌贼
可以的

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-2-18 11:12
郝酒的latex写的还好啊!

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

 Author| 郝酒 Posted 2014-2-18 11:37
用markdown + mathjax 写的,有兴趣的朋友可以尝试下。
stackedit.io/

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-2-18 12:20
回复 6# 郝酒
英文的,看不懂啊!
我还是用kuing的草稿本,就在左下方。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-2-18 15:21
回复 2# 郝酒

min 和 max 反了吧

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-10-4 21:07
恩。这道题一定要lu.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-10-6 00:38
回复 9# Tesla35
是高考题吧?

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-10-6 10:30
回复 10# 其妙


    来源未知。

10

Threads

26

Posts

197

Credits

Credits
197

Show all posts

chr93918 Posted 2014-10-11 09:17
2002年压轴题

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-10-19 13:46
看来猜得不错

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit